• Title/Summary/Keyword: Propagator Method

Search Result 27, Processing Time 0.024 seconds

Excitation Energy Transfer Rate Constants in meso-meso Linked Zn(II) Porphyrin Arrays with Energy Accepting 5,15-Bisphenylethynylated Zn(II) Porphyrin

  • Ko, Da-Mee;Kim, Hee-Young;Park, Jin-Hee;Kim, Dong-Ho;Sim, Eun-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1505-1511
    • /
    • 2005
  • The excitation energy transfer process occurring in energy donor-acceptor linked porphyrin array system is theoretically simulated using the on-the-fly filtered propagator path integral method. The compound consists of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin, in which the donor array and the acceptor are linked via a 1,4-phenylene spacer. Real-time path integral simulations provide time-evolution of the site population and the excitation energy transfer rate constants are determined. Simulations and experiments show an excellent agreement indicating that the path integration is a useful tool to investigate the energy transfer dynamics in molecular assemblies.

Effect of Pre-Sowing Treatments on Germination and Initial Seedling Growth of Castanopsis Indica- An Endangered Tree Species in Bangladesh

  • Hasnat, G.N. Tanjina;Hossain, Md. Akhter;Hossain, Mohammed Kamal;Uddin, Mohammad Main
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • Castanopsis indica (Sil Batna) is an ecologically valuable multipurpose indigenous tree species of Bangladesh. Considering its high value but poor natural regeneration due to seed dormancy, the authors conducted an experiment at the Institute of Forestry and Environmental Sciences Chittagong University (IFESCU) during 2012-2013 to find out effective pre-sowing treatments. Ten pre-sowing seed treatments were applied on mature, even-sized seeds namely-control; sandpaper rubbing; nail clipping; immersion in normal water (at room temperature: 24℃) for 24 hrs., 48 hrs. and 72 hrs.; immersion in hot water (80℃) for 1 minute; soaking in 10% dilute H2SO4; soaking in 10% HCl for 5 minutes; and sowing in propagator house. Seeds sown after sandpaper rubbing at the distal end revealed best performances by providing highest germination percent (66.7%), germination energy (30%), germination index (0.17), germination rate (0.0145), germination value (30%) and plant percent (66.7%) within shortest period (38 days). The treatment also produced most vigor seedlings with 20.9 cm shoot height, 15 node number, and largest leaves (11.1 cm×2.9 cm). Hence, it is recommended to adopt sandpaper rubbing method for maximum germination and quality seedlings.

Synthetic Seismograms of Non-geometric S* and P* Waves Using the Reflectivity Method (반사도 기법에 의한 비기하적 S* 및 P* 파의 합성 계산)

  • Hong, Dong Hee;Baag, Chang Eob
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.393-409
    • /
    • 1990
  • Synthetic seismograms and deduced characteristic properties of the non-geometrical $S^*$ and $P^*$ waves are presented. These waves are excited on the free surface or an interface between two different media by an inhomogeneous P wave from a point source nearby, and propagate as homogeneous waves in the media. Synthetic seismograms are computed using an extended reflectivity method designed for buried source and receiver. An efficient computational procedure for propagator matrices of layers is devised to reduce the computational time and the RAM memory size in the implementation of the reflectivity method. Radiation patterns are obtained from the particle motions of the four types of the "*" waves, i.e., the $S^*$ wave generated near the free surface, and the reflected $S^*$, transmitted $S^*$ and transmitted $P^*$ waves generated near an interface. Some patterns show polarity changes of displacements and others reveal monotonic or non-monotonic variation of amplitude depending on the velocity structure. The decaying trend of amplitude with increasing epicentral distance are also shown for the head wave type of the "*" waves.

  • PDF

Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites (저궤도 위성의 실시간 On-board 궤도 결정 성능 분석)

  • Kim, Eun-Hyouek;Koh, Dong-Wook;Chung, Young-Suk;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In this paper, a real time on-board orbit determination method using the extended kalman filter is suggested and its performance is analyzed in the environment of the orbit. Considering the limited on-board resources, the $J_2$ orbit propagate model and the GPS navigation solution are used for on-board orbit determination. The analysis result of the on-board orbit determination method implemented in DubaiSat-2 showed that position and velocity error are improved from 70.26 m to 26.25 m and from 3.6 m/s to 0.044 m/s, respectively when abnormal excursion errors is removed in the GPS navigation solution.

New TLE generation method based on the past TLEs (과거 TLE정보를 활용한 새로운 TLE정보 생성기법)

  • Cho, Dong-Hyun;Han, Sang-Hyuck;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.881-891
    • /
    • 2017
  • In this paper, we described the new TLE(Two Line Elements) generation method based on the compansation technique by using past TLEs(Two Line Elements) released by JSpOC(Joint Space Operation Center) in USA to reduce the orbit prediction error for long duration of SGP4(Simplified General Perturbations 4) which is a simplifed and analytical orbit propagator. The orbital residuals the orbital difference between two ephemeris for the first TLE only and for the all TLEs updated by JSpOC for the past some period was applied for this algorithm instead of general orbit determination software. Actually, in these orbital residuals, the trend of orbit prediction error from SGP4 is included. Thus, it is possible to make a simple residual function from these orbital residulas by using the fitting process. By using these residual functions with SGP4 prediction data for the currnet TLE data, the compansated orbit prediction can be reconstructed and the orbit prediction error for long duration of SGP4 is also reduced. And it is possible to generate new TLE data from it. In this paper, we demonstraed this algorithm in simple simulation, and the orbital error is decreased dramatically from 4km for the SGP4 propagation to 2km for it during 7 days as a result.

DYNAMIC MODEL DEVELOPMENT FOR INTERPLANETARY NAVIGATION (행성탐사 항행해 결정을 위한 동역학 모델 개발)

  • Park, Eun-Seo;Song, Young-Joo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.463-472
    • /
    • 2005
  • In this paper, the dynamic model development for interplanetary navigation has been discussed. The Cowell method for special perturbation theories was employed to develop an interplanetary trajectory propagator including the perturbations due to geopotential, the Earth's dynamic polar motion, the gravity of the Sun, the Moon and the other planets in the solar system, the relativistic effect of the Sun, solar radiation pressure, and atmospheric drag. The equations of motion in dynamic model were numerically integrated using Adams-Cowell 11th order predictor-corrector method. To compare the influences of each perturbation, trajectory propagation was performed using initial transfer orbit elements of the Mars Express mission launched in 2003, because it can be the criterion to choose proper perturbation models for navigation upon required accuracy. To investigate the performance of dynamic model developed, it was tested whether the spacecraft can reach the Mars. The interplanetary navigation tool developed in this study demonstrated the spacecraft entering the Mars SOI(Sphere of Influence) and its velocity .elative to the Mars was less than the escape velocity of the Mars, hence, the spacecraft can arrive at the target planet. The obtained results were also verified by using the AGI Satellite Tool Kit. It is concluded that the developed program is suitable for supporting interplanetary spacecraft mission for a future Korean Mars mission.

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT (화성 근접 탐사를 위한 우주선의 궤도전파 소프트웨어)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Kim, Han-Dol;Choi, Jun-Min;Kim, Hak-Jung;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.