• Title/Summary/Keyword: Propagation of Error

Search Result 1,007, Processing Time 0.028 seconds

Cascaded Propagation and Reduction Techniques for Fault Binary Decision Diagram in Single-event Transient Analysis

  • Park, Jong Kang;Kim, Myoungha;Kim, Jong Tae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 2017
  • Single Event Transient has a critical impact on highly integrated logic circuits which are currently common in various commercial and consumer electronic devices. Reliability against the soft and intermittent faults will become a key metric to evaluate such complex system on chip designs. Our previous work analyzing soft errors was focused on parallelizing and optimizing error propagation procedures for individual transient faults on logic and sequential cells. In this paper, we present a new propagation technique where a fault binary decision diagram (BDD) continues to merge every new fault generated from the subsequent logic gate traversal. BDD-based transient fault analysis has been known to provide the most accurate results that consider both electrical and logical properties for the given design. However, it suffers from a limitation in storing and handling BDDs that can be increased in size and operations by the exponential order. On the other hand, the proposed method requires only a visit to each logic gate traversal and unnecessary BDDs can be removed or reduced. This results in an approximately 20-200 fold speed increase while the existing parallelized procedure is only 3-4 times faster than the baseline algorithm.

Precision Improvement Technique of Propagation Delay Distance Measurement Using IEEE 1588 PTP (IEEE 1588 PTP를 이용한 전파 지연 거리 측정의 정밀도 향상 기법)

  • Gu, Young Mo;Boo, Jung-il;Ha, Jeong-wan;Kim, Bokki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.515-519
    • /
    • 2021
  • IEEE 1588 PTP is a precision time protocol in which two systems synchronize without the aid of GPS by exchanging packets including transmission/reception time information. In the time synchronization process, the propagation delay time can be calculated and the distance between the two systems can be measured using this. In this paper, we proposed a method to improve the distance measurement precision less than the modulation symbol period using the timing error information extracted from the preamble of the received packet. Computer simulations show that the distance measurement precision is proportional to the length of the preamble PN sequence and the signal-to-noise ratio.

Compare the accuracy of stereo matching using belief propagation and area-based matching (Belief Propagation를 적용한 스테레오 정합과 영역 기반 정합 알고리즘의 정확성 비교)

  • Park, Jong-Il;Kim, Dong-Han;Eum, Nak-Woong;Lee, Kwang-Yeob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.119-122
    • /
    • 2011
  • The Stereo vision using belief propagation algorithm that has been studied recently yields good performance in disparity extraction. In this paper, BP algorithm is proved theoretically to high precision for a stereo matching algorithm. We derive disparity map from stereo image by using Belief Propagation (BP) algorithm and area-based matching algorithm. Two algorithms are compared using stereo images provided by Middlebury web site. Disparity map error rate decreased from 52.3% to 2.3%.

  • PDF

A Study on the Decision Feedback Equalizer using Neural Networks

  • Park, Sung-Hyun;Lee, Yeoung-Soo;Lee, Sang-Bae;Kim, Il;Tack, Han-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.474-478
    • /
    • 1998
  • A new approach for the decision feedback equalizer(DFE) based on the back-propagation neural networks is described. We propose the method of optimal structure for back-propagation neural networks model. In order to construct an the optimal structure, we first prescribe the bounds of learning procedure, and the, we employ the method of incrementing the number of input neuron by utilizing the derivative of the error with respect to an hidden neuron weights. The structure is applied to the problem of adaptive equalization in the presence of inter symbol interference(ISI), additive white Gaussian noise. From the simulation results, it is observed that the performance of the propose neural networks based decision feedback equalizer outperforms the other two in terms of bit-error rate(BER) and attainable MSE level over a signal ratio and channel nonlinearities.

  • PDF

Classification System of EEG Signals During Mental Tasks

  • Seo Hee Don;Kim Min Soo;Eoh Soo Hae;Huang Xiyue;Rajanna K.
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.671-674
    • /
    • 2004
  • We propose accurate classification method of EEG signals during mental tasks. In the experimental task, the tasks of subjects show 3 major measurements; there are mathematical tasks, color decision tasks, and Chinese phrase tasks. The classifier implemented for this work is a feed-forward neural network that trained with the error back-propagation algorithm. The new BCI system is proposed by using neural network. In this system, tr e architecture of the neural network is composed of three layers with a feed-forward network, which implements the error back propagation-learning algorithm. By applying this algorithm to 4 subjects, we achieved $95{\%}$ classification rates. The results for BCI mathematical task experiments show performance better than those of the Chinese phrase tasks. The selection time of each task depends on the mental task of subjects. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or yes/no discrimination methods.

  • PDF

Efficient Image Chaotic Encryption Algorithm with No Propagation Error

  • Awad, Abir;Awad, Dounia
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.774-783
    • /
    • 2010
  • Many chaos-based encryption methods have been presented and discussed in the last two decades, but very few of them are suitable to secure transmission on noisy channels or respect the standard of the National Institute of Standards and Technology (NIST). This paper tackles the problem and presents a novel chaos-based cryptosystem for secure transmitted images. The proposed cryptosystem overcomes the drawbacks of existing chaotic algorithms such as the Socek, Xiang, Yang, and Wong methods. It takes advantage of the increasingly complex behavior of perturbed chaotic signals. The perturbing orbit technique improves the dynamic statistical properties of generated chaotic sequences, permits the proposed algorithm reaching higher performance, and avoids the problem of error propagation. Finally, many standard tools, such as NIST tests, are used to quantify the security level of the proposed cryptosystem, and experimental results prove that the suggested cryptosystem has a high security level, lower correlation coefficients, and improved entropy.

Design of Nonlinear Fixed-interval Smoother for Off-line Navigation (오프라인 항법을 위한 비선형 고정구간 스무더 설계)

  • 유재종;이장규;박찬국;한형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.984-990
    • /
    • 2002
  • We propose a new type of nonlinear fixed interval smoother to which an existing nonlinear smoother is modified. The nonlinear smoother is derived from two-filter formulas. For the backward filter. the propagation and the update equation of error states are derived. In particular, the modified update equation of the backward filter uses the estimated error terms from the forward filter. Data fusion algorithm, which combines the forward filter result and the backward filter result, is altered into the compatible form with the new type of the backward filter. The proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing algorithm to off-line navigation system and show the proposed algorithm estimates position, and altitude fairly well through the computer simulation.

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network (신경회로망을 이용한 AUV의 시스템 동정화 및 응용)

  • 이판묵;이종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

Design of Nonlinear Fixed-Interval Smoothing Filter and Its Application to SDINS

  • Yu, Jae-Jong;Lee, Jang-Gyu;Hong, Hyun-Su;Han, Hyung-Seok;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.4-177
    • /
    • 2001
  • In this paper, we propose a new type of nonlinear fixed interval smoothing filter which is modified from the existing nonlinear smoothing filter. A nonlinear smoothing filter is derived from two-filter formulas. For the backward filter, the propagation and update equation of error states are derived. Particularly the modified update equation of the backward filter use the estimated error terms from the forward filter. Smoothing algorithm is altered into the compatible form with the new type of the backward fitter. An advantage of the proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing ...

  • PDF