• Title/Summary/Keyword: Prompt-based learning

Search Result 42, Processing Time 0.023 seconds

Context-Based Prompt Selection Methodology to Enhance Performance in Prompt-Based Learning

  • Lib Kim;Namgyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.9-21
    • /
    • 2024
  • Deep learning has been developing rapidly in recent years, with many researchers working to utilize large language models in various domains. However, there are practical difficulties that developing and utilizing language models require massive data and high-performance computing resources. Therefore, in-context learning, which utilizes prompts to learn efficiently, has been introduced, but there needs to be clear criteria for effective prompts for learning. In this study, we propose a methodology for enhancing prompt-based learning performance by improving the PET technique, which is one of the contextual learning methods, to select PVPs that are similar to the context of existing data. To evaluate the performance of the proposed methodology, we conducted experiments with 30,100 restaurant review datasets collected from Yelp, an online business review platform. We found that the proposed methodology outperforms traditional PET in all aspects of accuracy, stability, and learning efficiency.

Prompt-based Full-Shot and Few-Shot Learning for Diagnosing Dementia and Schizophrenia (Prompt 기반의 Full-Shot Learning과 Few-Shot Learning을 이용한 알츠하이머병 치매와 조현병 진단)

  • Min-Kyo Jung;Seung-Hoon Na;Ko Woon Kim;Byoung-Soo Shin;Young-Chul Chung
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.47-52
    • /
    • 2022
  • 환자와 주변인들에게 다양한 문제를 야기하는 치매와 조현병 진단을 위한 모델을 제안한다. 치매와 조현병 진단을 위해 프로토콜에 따라 녹음한 의사와 내담자 음성 시료를 전사 작업하여 분류 태스크를 수행하였다. 사전 학습한 언어 모델의 MLM Head를 이용해 분류 태스크를 수행하는 Prompt 기반의 분류 모델을 제안하였다. 또한 많은 수의 데이터 수를 확보하기 어려운 의료 분야에 효율적인 Few-Shot 학습 방식을 이용하였다. CLS 토큰을 미세조정하는 일반적 학습 방식의 Baseline과 비교해 Full-Shot 실험에서 7개 태스크 중 1개 태스크에서 macro, micro-F1 점수 모두 향상되었고, 3개 태스크에서 하나의 F1 점수만 향샹된 것을 확인 하였다. 반면, Few-Shot 실험에서는 7개 태스크 중 2개 태스크에서 macro, micro-F1 점수가 모두 향상되었고, 2개 태스크에서 하나의 F1 점수만 향상되었다.

  • PDF

On-line Learnign control of Nonlinear Systems Usig Local Affine Mapping-based Networks

  • Chio, Jin-Young;Kim, Dong-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.3-10
    • /
    • 1995
  • This paper proposedan on-line learning controller which can be applied to nonlinear systems. The proposed on-line learning controller is based on the universal approximation by the local affine mapping-based neural networks. It has self-organizing and learning capability to adapt itself to the new environment arising from the variation of operating point of the nonlinear system. Since the learning controller retains the knowledge of trained dynamics, it can promptly adapt itself to situations similar to the previously experienced one. This prompt adaptability of the proposed control system is illustrated through simulations.

  • PDF

Learning from Instruction: A Comprehension-Based Approach (지시문을 통한 학습: 이해-기반 접근)

  • Kim, Shin-Woo;Kim, Min-Young;Lee, Jisun;Sohn, Young-Woo
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.3
    • /
    • pp.23-36
    • /
    • 2003
  • A comprehension-based approach to learning assumes that incoming information and background knowledge are integrated to form a mental representation which is subsequently used to incorporate new knowledge. It is demonstrated that this approach can be validated by comparing human and computational model performance in the prompt learning context. A computational model (ADAPT-UNIX) based on the construction-integration theory of comprehension (Kintsch, 1988; 1998) predicted how users learn from help prompts which are designed to assist UNIX composite command production. In addition, the comparison also revealed high similarity in composite production task performance between model and human. Educational implications of present research are discussed on the basis of the fact that prompt instructions have differential effect on learning and application as background knowledge varies.

  • PDF

Reconstructing the Meaning of Flipped Learning by Analyzing Learners' Experiences (학습자의 경험 분석을 통한 플립 러닝의 재해석)

  • Lee, Yekyung;Youn, Soonkyoung
    • Journal of Engineering Education Research
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2017
  • This paper explored how university students viewed flipped learning from their own perspectives. Using qualitative research methods, 5 students from a Computer Graphics course at a mid-scale university in Seoul were interviewed for this purpose. Researchers collected data about their learning experiences, emotions, and reflections about flipped learning in general and its components such as online materials, in-class activities, and instructor guidance. Research findings indicated that students were not so much conscious about the unfamiliarity of the class, the increased work load, nor the online lectures. They rather prioritized 'what they could actually learn' from the course, and thus defined flipped learning as a method which enabled students to constantly check and fill in the gaps in their learning through team-based activities and prompt feedback from the professor. A combination of students' positive attitude and active participation in team-based activities, the overall atmosphere of the department which supported interactivity and collaboration, the professor's emphasis on learning-by-doing and student-centered learning appeared to form their notions of flipped learning. The use of technology did not appear to heavily impact students' conceptions of flipped learning. Researchers suggest that pedagogical beliefs of the professor, culture surrounding the learner, and the good match between the course content and instructional strategies are central for designing a successful flipped learning class.

Identification of Pb-Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology

  • Haolong Huang;Pingkun Cai;Wenbao Jia;Yan Zhang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1708-1717
    • /
    • 2023
  • The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.

A Study of 3D Digital Fashion Design Using Kazmir Malevich's Formative Elements as AI Prompt (카지미르 말레비치의 조형적 요소를 AI 프롬프트로 활용한 3D 디지털 패션디자인 연구)

  • Jooyoung Lee
    • Journal of Fashion Business
    • /
    • v.28 no.3
    • /
    • pp.122-139
    • /
    • 2024
  • Image-generated AI is rapidly emerging as a powerful tool to augment human creativity and transform the art and design process through deep learning capabilities. The purpose of this study was to propose and demonstrate the feasibility of a new design development method that combined traditional design methods and technology by constructing image-generated AI prompts based on artists' formative elements. The study methodology consisted of analyzing Kazmir Malevich's theoretical considerations and applying them to AI prompts for design, print pattern development, and 3D digital design. This study found that the suprematist works of Kazmir Malevich were suitable as design and print pattern prompts due to their clear geometric shapes, colors, and spatial arrangement. The AI-prompted designs and print patterns produced diverse results quickly and enabled an efficient design process compared to traditional methods, although additional refinement was required to perfect the details. The AI-generated designs were successfully produced as 3D garments, thereby demonstrating that AI technology could significantly contribute to fashion design through its integration with artistic principles. This study has academic significance in that it proposes a prompt composition method applicable to fashion design by combining AI and artistic elements. It also has industrial significance in that it contributes to design innovation and the implementation of creative ideas by presenting an AI-based design process that can be practically applied.

A Fall Detection Technique using Features from Multiple Sliding Windows

  • Pant, Sudarshan;Kim, Jinsoo;Lee, Sangdon
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.79-89
    • /
    • 2018
  • In recent years, falls among elderly people have gained serious attention as a major cause of injuries. Falls often lead to fatal consequences due to lack of prompt response and rescue. Therefore, a more accurate fall detection system and an effective feature extraction technique are required to prevent and reduce the risk of such incidents. In this paper, we proposed an efficient feature extraction technique based on multiple sliding windows and validated it through a series of experiments using supervised learning algorithms. The experiments were conducted using the public datasets obtained from tri-axial accelerometers. The results depicted that extraction of the feature from adjacent sliding windows led to high accuracy in supervised machine learning-based fall detection. Also, the experiments conducted in this study suggested that the best accuracy can be achieved by keeping the window size as small as 2 seconds. With the kNN classifier and dataset from wearable sensors, the experiments achieved accuracy rates of 94%.

Parameter-Efficient Prompting for Few-Shot Learning (Prompting 기반 매개변수 효율적인 Few-Shot 학습 연구)

  • Eunhwan Park;Sung-Min Lee;Daeryong Seo;Donghyeon Jeon;Inho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.343-347
    • /
    • 2022
  • 최근 자연어처리 분야에서는 BERT, RoBERTa, 그리고 BART와 같은 사전 학습된 언어 모델 (Pre-trained Language Models, PLM) 기반 미세 조정 학습을 통하여 여러 하위 과업에서 좋은 성능을 거두고 있다. 이는 사전 학습된 언어 모델 및 데이터 집합의 크기, 그리고 모델 구성의 중요성을 보여주며 대규모 사전 학습된 언어 모델이 각광받는 계기가 되었다. 하지만, 거대한 모델의 크기로 인하여 실제 산업에서 쉽게 쓰이기 힘들다는 단점이 명백히 존재함에 따라 최근 매개변수 효율적인 미세 조정 및 Few-Shot 학습 연구가 많은 주목을 받고 있다. 본 논문은 Prompt tuning, Prefix tuning와 프롬프트 기반 미세 조정 (Prompt-based fine-tuning)을 결합한 Few-Shot 학습 연구를 제안한다. 제안한 방법은 미세 조정 ←→ 사전 학습 간의 지식 격차를 줄일 뿐만 아니라 기존의 일반적인 미세 조정 기반 Few-Shot 학습 성능보다 크게 향상됨을 보인다.

  • PDF

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.