• Title/Summary/Keyword: Prompt Gamma rays

Search Result 25, Processing Time 0.021 seconds

The Spectral Sharpness Angle of Gamma-ray Bursts

  • Yu, Hoi-Fung;van Eerten, Hendrik J.;Greiner, Jochen;Sari, Re'em;Bhat, P. Narayana;Kienlin, Andreas von;Paciesas, William S.;Preece, Robert D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.109-117
    • /
    • 2016
  • We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

Design and optimization of thermal neutron activation device based on 5 MeV electron linear accelerator

  • Mahnoush Masoumi;S. Farhad Masoudi;Faezeh Rahmani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4246-4251
    • /
    • 2023
  • The optimized design of a Neutron Activation Analysis (NAA) system, including Delayed Gamma NAA (DGNAA) and Prompt Gamma NAA (PGNAA), has been proposed in this research based on Mevex Linac with 5 MeV electron energy and 50 kW power as a neutron source. Based on the MCNPX 2.6 simulation, the optimized configuration contains; tungsten as an electron-photon converter, BeO as a photoneutron target, BeD2 and plexiglass as moderators, and graphite as a reflector and collimator, as well as lead as a gamma shield. The obtained thermal neutron flux at the beam port is equal to 2.06 × 109 (# /cm2.s). In addition, using the optimized neutron beam, the detection limit has been calculated for some elements such as H-1, B-10, Na-23, Al-27, and Ti-48. The HPGe Coaxial detector has been used to measure gamma rays emitted by nuclides in the sample. By the results, the proposed system can be an appropriate solution to measure the concentration and toxicity of elements in different samples such as food, soil, and plant samples.

Measurement of Energy Dependent Differential Neutron Capture Cross-section of Natural Sm by Using a Continuous Neutron Flux below (연속에너지 중성자에 대한 천연 Sm의 중성자 포획단면적 측정)

  • Yoon, Jungran
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.337-341
    • /
    • 2016
  • We measured the neutron capture cross-section of natural Sm(n,${\gamma}$) reaction in the energy regions from 0.003 to 10 eV. The 46-MeV electron linear accelerator of Research Reactor Institute, Kyoto University was used for generating a continuous neutron source. The neutron time-of-flight method was adopted for energy measurement. An assembly of BGO($Bi_4Ge_3O_{12}$) scintillators composed of 12 pieces of BGO crystals measured prompt gamma rays from Sm(n,${\gamma}$) reaction. The BGO assembly was located at a distance of $12.7{\pm}0.02m$ from the neutron source. In order to determine the neutron flux impinging on the Sm, the $^{10}B(n,{\alpha}{\gamma})^7Li$ standard cross-section were used. Natural Sm(n,${\gamma}$) reaction measurement result of the neutron capture cross-section was compared with the results of evaluation of the BROND-2.2 and the previous experimental data of J. C. Chou and V. N. Kononov.

THE PEAK ENERGY-DURATION CORRELATION AND POSSIBLE IMPLICATIONS ON GAMMA RAY BURST PROGENITOR

  • Chang Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.167-176
    • /
    • 2006
  • We investigate the correlation between the peak energy and the burst duration using available long GRB data with known redshift, whose circumburst medium type has been suggested via afterglow light curve modeling. We find that the peak energy and the burst duration of the observed GRBs are correlated both in the observer frame and in the GRB rest frame. For our total sample we obtain, for instance, the Spearman rank-order correlation values ${\sim}0.75\;and\;{\sim}0.65$ with the chance probabilities $P=1.0{\times}10^{-3}\;and\;P=6.0{\times}10^{-3}$ in the observer frame and in the GRB rest frame, respectively. We note that taking the effects of the expanding universe into account reduces the value a bit. We further attempt to separate our GRB sample into the 'ISM' GRBs and the 'WIND' GRBs according to environment models inferred from the afterglow light curves and apply statistical tests, as one may expect that clues on the progenitor of GRBs can be deduced directly from prompt emission properties other than from the ambient environment surrounding GRBs. We find that two subsamples of GRBs show different correlation coefficients. That is, the Spearman rank-order correlation are ${\sim}0.65\;and\;{\sim}0.57$ for the 'ISM' GRBs and 'WIND' GRBs, respectively, after taking the effects of the expanding universe into account. It is not yet, however, statistically very much significant that the GRBS in two types of circumburst media show statistically characteristic behaviors, from which one may conclude that all the long bursts are not originated from a single progenitor population. A larger size of data is required to increase the statistical significance.

GAMMA-RAY BURST FORMATION ENVIRONMENT: COMPARISON OF REDSHIFT DISTRIBUTIONS OF GRB AFTERGLOWS (감마선 폭발체의 생성 환경: 에너지 영역별 잔유휘광의 거리 분포 비교)

  • Kim, Sung-Eun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.377-384
    • /
    • 2005
  • Since gamma-ray bursts(GRBs) have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years) than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of waveleogths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRE environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributious as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.