• 제목/요약/키워드: Prompt Gamma rays

검색결과 25건 처리시간 0.026초

A field determination method of D-T neutron source yields based on oxygen prompt gamma rays

  • Xiongjie Zhang;Bin Tang ;Geng Nian;Haitao Wang ;Lijiao Zhang ;Yan Zhang ;Rui Chen ;Zhifeng Liu ;Jinhui Qu
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2572-2577
    • /
    • 2023
  • A field determination method for small D-T neutron source yield based on the oxygen prompt gamma rays was established. A neutron-gamma transport equation of the determination device was developed. Two yield field determination devices with a thickness of 20 mm and 50 mm were made. The count rates of the oxygen prompt gamma rays were calculated using three energy spectra processing approaches, which were the characteristic peak of 6.13 MeV, the overlapping peak of 6.92 MeV and 7.12 MeV, and the total energy area. The R-square of the calibration curve is better than 94% and the maximum error of the yield test is 5.21%, demonstrating that it is feasible to measure the yield of D-T neutron source by oxygen prompt gamma rays. Additionally, the results meet the requirements for field determination of the conventional D-T neutron source yield.

Monte-Carlo simulation for detecting neutron and gamma-ray simultaneously with CdZnTe half-covered by gadolinium film

  • J. Byun ;J. Seo ;Y. Kim;J. Park;K. Shin ;W. Lee ;K. Lee ;K. Kim;B. Park
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1031-1035
    • /
    • 2023
  • Neutron is an indirectly ionizing particle without charge, which is normally measured by detecting reaction products. Neutron detection system based on measuring gadolinium-converted gamma-rays is a good way to monitor the neutron because the representative prompt gamma-rays of gadolinium have low energies (79, 89, 182, and 199 keV). Low energy gamma-rays and their high attenuation coefficient on materials allow the simple design of a detector easier to manufacture. Thus, we designed a cadmium zinc telluride detector to investigate feasibility of simultaneous detection of gamma-rays and neutrons by using the Monte-Carlo simulation, which was divided into two parts; first was gamma-detection part and second was gamma- and neutron-simultaneous detection part. Consequently, we confirmed that simultaneous detection of gamma-rays and neutrons could be feasible and valid, although further research is needed for adoption on real detection.

68Ga-DOTATOC PET/CT에서 Prompt Gamma Correction을 적용한 SUV의 평가 (Evaluation of Standardized Uptake Value applying Prompt Gamma Correction on 68Ga-DOTATOC PET/CT Image)

  • 윤석환
    • 한국방사선학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2018
  • $^{68}Ga$ 방사성 핵종은 $^{68}Ge/^{68}Ga$ 제너레이터에서 생산되는 양전자 방출핵종으로서 PET 검사에 이용되는 방사성 핵종이다. $^{68}Ga$은 67.8분의 반감기를 가지고 88.9 %의 ${\beta}$+ 붕괴와 11.1 %의 전자포획으로 $^{68}Zn$으로 붕괴된다. ${\beta}$+ 붕괴 과정에서 87.7 %는 기저상태의 $^{68}Zn$로 붕괴되며, 1.2 %는 여기상태의 $^{68}Zn$로 붕괴된다. 여기상태의 $^{68}Zn$은 1.077 Mev의 ${\gamma}$선을 방출하며 기저상태의 $^{68}Zn$가 된다. 이때 방출되는 1.077 Mev의 ${\gamma}$선을 Prompt Gamma라 하며, Prompt Gamma-ray가 환자와 상호작용하게 되면 저에너지 ${\gamma}$선의 산란선이 발생되게 되는데 이 산란선이 PET의 동시계수 회로에 검출되어 질 수 있다. 이 연구의 목적은 $^{68}Ga$을 이용하는 PET검사 중 신경내분비 종양진단에 사용되는 $^{68}Ga$-DOTATOC PET/CT영상에 Prompt Gamma-ray 보정 전 후의 표준섭취계수(SUV)를 평가해 보고자 하였다. $^{68}Ga$-DOTATOC PET/CT를 시행한 15명의 환자에 대해서 병변부위(Pancreas, Liver, Thoracic Spine, Brain)와 정상으로 섭취되는 조직(Pituitary, Lung, Liver, Spleen, Kidney, Intestine)의 SUVmax와 SUVmean을 비교하였으며, 임상영상의 정량적 평가를 위해 Target to Background Ratio(TBR)을 산출하여 비교하였다. Prompt Gamma-ray 보정 후 Thoracic Spine을 제외한 병변부위와 Pituitary를 제외한 정상조직에서 SUVmax, SUVmean은 높은 값을 나타내었으며, TBR은 Prompt Gamma-ray 보정 전 후 각각 $51.51{\pm}49.28$, $55.50{\pm}53.12$로 보정 후 높은 값을 나타냈다. (p<0.0001)

Daily adaptive proton therapy: Feasibility study of detection of tumor variations based on tomographic imaging of prompt gamma emission from proton-boron fusion reaction

  • Choi, Min-Geon;Law, Martin;Djeng, Shin-Kien;Kim, Moo-Sub;Shin, Han-Back;Choe, Bo-Young;Yoon, Do-Kun;Suh, Tae Suk
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3006-3016
    • /
    • 2022
  • In this study, the images of specific prompt gamma (PG)-rays of 719 keV emitted from proton-boron reactions were analyzed using single-photon emission computed tomography (SPECT). Quantitative evaluation of the images verified the detection of anatomical changes in tumors, one of the important factors in daily adaptive proton therapy (DAPT) and verified the possibility of application of the PG-ray images to DAPT. Six scenarios were considered based on various sizes and locations compared to the reference virtual tumor to observe the anatomical alterations in the virtual tumor. Subsequently, PG-rays SPECT images were acquired using the modified ordered subset expectation-maximization algorithm, and these were evaluated using quantitative analysis methods. The results confirmed that the pixel range and location of the highest value of the normalized pixel in the PG-rays SPECT image profile changed according to the size and location of the virtual tumor. Moreover, the alterations in the virtual tumor size and location in the PG-rays SPECT images were similar to the true size and location alterations set in the phantom. Based on the above results, the tumor anatomical alterations in DAPT could be adequately detected and verified through SPECT imaging using the 719 keV PG-rays acquired during treatment.

Physical mechanism of gamma-ray bursts: recent breakthroughs

  • 엄정휘
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.39.1-39.1
    • /
    • 2018
  • Although it is agreed that the gamma-ray bursts (GRBs) invoke highly relativistic jets with bulk Lorentz factors of a few hundreds, the exact physical mechanism producing such powerful gamma-rays still remains debated. Three outstanding and important questions in the field concern (1) the composition of GRB jets (i.e., matter-dominated vs Poynting-flux-dominated), (2) the involved radiative process responsible for the observed gamma-rays (i.e., synchrotron mechanism vs photospheric radiation), and (3) the distance of the emitting region from the central engine where the prompt gamma-rays are released (i.e., ~10^12 cm vs 10^14 cm vs 10^16 cm). I will present recent important breakthroughs that we have made, which answer these three questions.

  • PDF

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.262-268
    • /
    • 2022
  • This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.

252Cf 선원을 이용한 즉발감마선 계측시스템 구성 (Development of Neutron Induced Prompt γ-ray Spectroscopy System Using 252Cf)

  • 박용준;송병철;지광용
    • 분석과학
    • /
    • 제16권1호
    • /
    • pp.12-24
    • /
    • 2003
  • $^{252}Cf$ 중성자 선원을 이용한 즉발감마선 계측 시스템 (NIPS, Neutron Induced Promp ${\gamma}$-ray Spectroscopy)을 설계 및 구성하기 위하여, 시스템내의 감속제 및 차폐체등의 효과를 시험하고 감마선 바탕값과 Cl을 포함한 시료의 즉발 감마선을 계측하였다. 이를 위한 예비시험으로 한국원자력연구소 내에 있는 TLD 판독용 $^{252}Cf$ 선원을 이용하였으며 즉발감마선은 시스템 내부의 동축형 HPGe (GMX, 60% relative efficiency)과 시스템외부 (약 20m 거리)의 Notebook PC 중성자와 감마선의 바탕값을 측정하고, 바탕값을 최소로 할 수 있는 차폐체의 기하학적 구조를 고안하였다. 감마선 바탕값을 최소화하기 위하여 두 개의 HPGe 검출기를 이용한 감마-감마 동시계측법을 이용하였다. 이 실험 자료를 이용하여 최적의 NIPS 시스템을 구성하였다.

Experimental setup for elemental analysis using prompt gamma rays at research reactor IBR-2

  • Hramco, C.;Turlybekuly, K.;Borzakov, S.B.;Gundorin, N.A.;Lychagin, E.V.;Nehaev, G.V.;Muzychka, A. Yu;Strelkov, A.V.;Teymurov, E.
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2999-3005
    • /
    • 2022
  • The new experimental setup has been built at the 11b channel of the IBR-2 research reactor at FLNP, JINR, to study the elemental composition of samples by registration of prompt gamma emission during thermal neutron capture. The setup consists of a curved mirror neutron guide and a radiation-resistant HPGe high-purity germanium detector. The detector is surrounded by lead shielding to suppress the natural background gamma level. The sample is placed in a vacuum channel and surrounded by a LiF shield to suppress the gamma background generated by scattered neutrons. This work presents characteristics of the experimental setup. An example of hydrogen concentration determining in a diamond powder made by detonation synthesis is given and on its basis, the sensitivity of the setup is calculated being ~4 ㎍.

Simulation of the Determination of NaCl Concentration in Concrete samples by the Neutron induced Prompt Gamma-ray Method

  • Kim, Hyeon-Soo
    • 한국환경과학회지
    • /
    • 제13권2호
    • /
    • pp.175-180
    • /
    • 2004
  • A prompt gamma-ray neutron activation (PGNA) system was simulated by the Monte Carlo N-Particle transport code (MCNP-4A) to estimate the level at which the scattered photon fluence rate, the absolute efficiency of the HPGe-detector, the volume of the concrete sample and the $^{35}$ /Cl(n, ${\gamma}$) reaction rate in this sample contribute to the count rate in the NaCl concentration measurement. The n- ${\gamma}$ fluence rates at the ST-2 beam tube exit of the HANARO reactor were used as input data, and the GAMMA-X type HPGe detector was modeled to tally 1.1649 MeV ${\gamma}$ -rays emitted from the $^{35}$ Cl(n, ${\gamma}$) reaction in the concrete sample. For three cylindrical concrete samples of 13.8, 46.8 and 157.1 ㎤ volumes, respectively, the relations between the NaCl weight fractions of 0.1, 1, 2 and 5 % in each of the concrete samples and the 1.1 649 MeV pulses created in the HPGe detector model were studied. As a result, it was found that the count rate at the same NaCl concentration nearly depends on the volume of the samples in a simulated condition of the same NaCl concentration samples, and that the linearities of the NaCl concentration calibration curves were reasonable in the narrow range of the NaCl weight fraction.

중성자선과 감마선 동시측정이 가능한 휴대용 계측시스템 개발에 관한 연구 (Development of a Portable Detection System for Simultaneous Measurements of Neutrons and Gamma Rays)

  • 김희경;홍용호;정영석;김재현;박수연
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.481-487
    • /
    • 2020
  • Radiation measurement technology has steadily improved and its usage is expanding in various industries such as nuclear medicine, security search, satellite, nondestructive testing, environmental industries and the domain of nuclear power plants (NPPs). Especially, the simultaneous measurements of gamma rays and neutrons can be even more critical for nuclear safety management of spent nuclear fuel and monitoring of the nuclear material. A semiconductor detector comprising cadmium, zinc, and tellurium (CZT) enables to detect gamma-rays due to the significant atomic weight of the elements via immediate neutron and gamma-ray detection. Semiconductor sensors might be used for nuclear safety management by monitoring nuclear materials and spent nuclear fuel with high spatial resolution as well as providing real-time measurements. We aim to introduce a portable nuclide-analysis device that enables the simultaneous measurements of neutrons and gamma rays using a CZT sensor. The detector has a high density and wide energy band gap, and thus exhibits highly sensitive physical characteristics and characteristics are required for performing neutron and gamma-ray detection. Portable nuclide-analysis device is used on NPP-decommissioning sites or the purpose of nuclear nonproliferation, it will rapidly detect the nuclear material and provide radioactive-material information. Eventually, portable nuclide-analysis device can reduce measurement time and economic costs by providing a basis for rational decision making.