• 제목/요약/키워드: Promising Index

검색결과 242건 처리시간 0.03초

광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성 (Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function)

  • 강유안;진상근;고종현;최영준
    • 한국해양바이오학회지
    • /
    • 제14권1호
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.

Quality Enhancement of Frozen Chicken Meat Marinated with Phosphate Alternatives

  • Mahabbat Ali;Shine Htet ,Aung;Edirisinghe Dewage Nalaka Sandun Abeyrathne;Ji-Young Park;Jong Hyun Jung;Aera Jang;Jong Youn Jeong;Ki-Chang Nam
    • 한국축산식품학회지
    • /
    • 제43권2호
    • /
    • pp.245-268
    • /
    • 2023
  • The effects of phosphate alternatives on meat quality in marinated chicken were investigated with the application of chilling and freezing. Breast muscles were injected with solution of the green weight containing 1.5% NaCl and 2% sodium tripolyphosphate (STPP) or phosphate alternatives. Treatment variables consisted of no phosphate [control (-)], 0.3% sodium tripolyphosphate [control (+)], 0.3% prune juice (PJ), 0.3% oyster shell, 0.3% nano-oyster shell, and 0.3% yeast and lemon extract (YLE) powder. One-third of the meat samples were stored at 4℃ for 1 d, and the rest of the meats were kept at -18℃ for 7 d. In chilled meat, a lower drip loss was noted for control (+) and YLE, whereas higher cooking yield in YLE compared to all tested groups. Compared with control (+), the other treatments except PJ showed higher pH, water holding capacity, moisture content, lower thawing and cooking loss, and shear force. Natural phosphate alternatives except for PJ, improved the CIE L* compared to control (-), and upregulated total protein solubility. However, phosphate alternatives showed similar or higher oxidative stability and impedance measurement compared to control (+), and an extensive effect on myofibrillar fragmentation index. A limited effect was observed for C*, h°, and free amino acids in treated meat. Eventually, the texture profile attributes in cooked of phosphate alternatives improved except for PJ. The results indicate the high potential use of natural additives could be promising and effective methods for replacing synthetic phosphate in chilled and frozen chicken with quality enhancement.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Effectiveness of a mobile health intervention on weight loss and dietary behavior changes among employees with overweight and obesity: a 12-week intervention study investigating the role of engagement

  • Imhuei Son;Jiyoun Hong;Young-Hee Han;Bo Jeong Gong;Meng Yuan Zhang;Woori Na;Cheongmin Sohn;Taisun Hyun
    • 대한지역사회영양학회지
    • /
    • 제28권2호
    • /
    • pp.141-159
    • /
    • 2023
  • Objectives: This study aimed to determine whether a mobile health (mhealth) intervention is effective in reducing weight and changing dietary behavior among employees with overweight and obesity. The study also investigated whether engagement with the intervention affected its effectiveness. Methods: The intervention involved the use of a dietary coaching app, a wearable device for monitoring physical activity and body composition, and a messenger app for communicating with participants and an intervention manager. A total of 235 employees were recruited for a 12-week intervention from eight workplaces in Korea. Questionnaire surveys, anthropometric measurements, and 24-h dietary recalls were conducted at baseline and after the intervention. Results: After the intervention, significant decreases in the mean body weight, body mass index, body fat percentage, and waist circumference were observed. Furthermore, the consumption frequencies of multigrain rice and legumes significantly increased, whereas those of pork belly, instant noodles, processed meat, carbonated beverages, and fast food significantly decreased compared with those at baseline. The mean dietary intake of energy and most nutrients also decreased after the intervention. When the participants were categorized into three groups according to their engagement level, significant differences in anthropometric data, dietary behaviors, and energy intake were observed following the intervention, although there were no differences at baseline, indicating that higher engagement level led to greater improvements in weight loss and dietary behavior. Conclusions: The intervention had positive effects on weight loss and dietary behavior changes, particularly among employees with higher engagement levels. These results indicate the importance of increasing the level of engagement in the intervention to enhance its effectiveness. The mhealth intervention is a promising model for health promotion for busy workers with limited time.

가상현실기반 인지재활훈련과 컴퓨터기반 인지재활훈련이 회복기 뇌졸중 환자의 기능과 전전두엽 피질에 미치는 영향에 대한 사전연구 (Preliminary Study on the Effects of Virtual Reality-based Cognitive Rehabilitation and Computer-based Cognitive Rehabilitation on Function and Prefrontal Cortex in Convalescent Stroke Patients)

  • 이현민;김수산
    • 대한물리의학회지
    • /
    • 제18권2호
    • /
    • pp.103-114
    • /
    • 2023
  • PURPOSE: This study compared the effects of computer-based and virtual reality-based cognitive rehabilitation programs on the cognitive function, upper limb function, activities of daily living, and their impact on the prefrontal cortex in convalescent stroke patients. METHODS: Ten recovering stroke patients were assessed for their cognitive function, upper limb function, and daily living activities using the Neurobehavioral Cognitive Status Examination, the Korean version of the Fugl-Meyer Assessment, and the Korean version of the Modified Barthel Index. The prefrontal cortex activity was measured with functional Near Infrared Spectroscopy. The virtual reality-based cognitive rehabilitation group utilized a program of daily living activities delivered via a laptop and Oculus Rift. The computer-based cognitive rehabilitation group performed various cognitive tasks on an all-in-one PC. Both groups underwent cognitive rehabilitation training for 30 minutes per day, three times a week, for six weeks, with identical conventional rehabilitation therapies in the hospital. RESULTS: Both programs positively impacted the cognitive and physical functions. On the other hand, the virtual reality-based cognitive rehabilitation program had a larger influence on improving the cognitive and physical functions of convalescing stroke patients. CONCLUSION: The virtual reality program suggests its potential to enhance cognitive and physical functions in convalescent stroke patients through increased engagement, focus, real-time feedback, and game elements, making it a promising rehabilitation approach.

Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

  • Guoqing Ren;Weichao Lv;Yue Ding;Lei Wang;ZhengGuo Cui;Renshi Li;Jiangwei Tian;Chaofeng Zhang
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.543-551
    • /
    • 2023
  • Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, coimmunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-b1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Restoring Ampicillin Sensitivity in Multidrug-Resistant Escherichia coli Following Treatment in Combination with Coffee Pulp Extracts

  • Anchalee Rawangkan;Atchariya Yosboonruang;Anong Kiddee;Achiraya Siriphap;Grissana Pook-In;Ratsada Praphasawat;Surasak Saokaew;Acharaporn Duangjai
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1179-1188
    • /
    • 2023
  • Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.

안면 백반증 치료 평가를 위한 딥러닝 기반 자동화 분석 시스템 개발 (Development of a Deep Learning-Based Automated Analysis System for Facial Vitiligo Treatment Evaluation)

  • 이세나;허연우;이솔암;박성빈
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권2호
    • /
    • pp.95-100
    • /
    • 2024
  • Vitiligo is a condition characterized by the destruction or dysfunction of melanin-producing cells in the skin, resulting in a loss of skin pigmentation. Facial vitiligo, specifically affecting the face, significantly impacts patients' appearance, thereby diminishing their quality of life. Evaluating the efficacy of facial vitiligo treatment typically relies on subjective assessments, such as the Facial Vitiligo Area Scoring Index (F-VASI), which can be time-consuming and subjective due to its reliance on clinical observations like lesion shape and distribution. Various machine learning and deep learning methods have been proposed for segmenting vitiligo areas in facial images, showing promising results. However, these methods often struggle to accurately segment vitiligo lesions irregularly distributed across the face. Therefore, our study introduces a framework aimed at improving the segmentation of vitiligo lesions on the face and providing an evaluation of vitiligo lesions. Our framework for facial vitiligo segmentation and lesion evaluation consists of three main steps. Firstly, we perform face detection to minimize background areas and identify the face area of interest using high-quality ultraviolet photographs. Secondly, we extract facial area masks and vitiligo lesion masks using a semantic segmentation network-based approach with the generated dataset. Thirdly, we automatically calculate the vitiligo area relative to the facial area. We evaluated the performance of facial and vitiligo lesion segmentation using an independent test dataset that was not included in the training and validation, showing excellent results. The framework proposed in this study can serve as a useful tool for evaluating the diagnosis and treatment efficacy of vitiligo.

Vinpocetine, a phosphodiesterase 1 inhibitor, mitigates atopic dermatitis-like skin inflammation

  • Yeon Jin Lee;Jin Yong Song;Su Hyun Lee;Yubin Lee;Kyu Teak Hwang;Ji-Yun Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.303-312
    • /
    • 2024
  • Atopic dermatitis (AD) is the most common inflammatory pruritic skin disease worldwide, characterized by the infiltration of multiple pathogenic T lymphocytes and histological symptoms such as epidermal and dermal thickening. This study aims to investigate the effect of vinpocetine (Vinp; a phosphodiesterase 1 inhibitor) on a 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like model. DNCB (1%) was administered on day 1 in the AD model. Subsequently, from day 14 onward, mice in each group (Vinp-treated groups: 1 mg/kg and 2 mg/kg and dexamethasone-treated group: 2 mg/kg) were administered 100 µl of a specific drug daily, whereas 0.2% DNCB was administered every other day for 30 min over 14 days. The Vinp-treated groups showed improved Eczema Area and Severity Index scores and trans-epidermal water loss, indicating the efficacy of Vinp in improving AD and enhancing skin barrier function. Histological analysis further confirmed the reduction in hyperplasia of the epidermis and the infiltration of inflammatory cells, including macrophages, eosinophils, and mast cells, with Vinp treatment. Moreover, Vinp reduced serum concentrations of IgE, interleukin (IL)-6, IL-13, and monocyte chemotactic protein-1. The mRNA levels of IL-1β, IL-6, Thymic stromal lymphopoietin, and transforming growth factor-beta (TGF-β) were reduced by Vinp treatment. Reduction of TGF-β protein by Vinp in skin tissue was also observed. Collectively, our results underscore the effectiveness of Vinp in mitigating DNCB-induced AD by modulating the expression of various biomarkers. Consequently, Vinp is a promising therapeutic candidate for treating AD.