• Title/Summary/Keyword: Proline incorporation

Search Result 17, Processing Time 0.023 seconds

THE EFFECT OF SODIUM FLUORIDE AND SODIUM ORTHOVANADATE ON OSTEOBLASTIC CELL LINE MC3T3-E1 CELLS (Sodium fluoride와 Sodium orthovanadate가 조골세포주 MC3T3-E1에 미치는 영향에 관한 연구)

  • Kim, Won-Jin;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.21 no.1 s.33
    • /
    • pp.97-111
    • /
    • 1991
  • It is the aim of this study to investigate the effects of sodium fluoride and sodium orthovanadate upon the proliferation and activity of the osteoblast (MC3T3-E1 cells). MC3T3-E1 cells were cultured in $\alpha-MEM$ containing $10\%$ FBS and various concentration of sodium fluoride and sodium orthovanadate was appended to serum free media. DNA synthesis was examined through the $[^3H]$ thymidine incorporation into DNA. Collagen synthesis was examined through the $[^3H]$ proline incorporation into collagenase digestible protein and noncollagen protein. The following results were drawn; 1. Sodium fluoride stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M$ to $10{\mu}M$ (P < 0.005). 2. Sodium orthovanadate stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M\;to\;8{\mu}M$, however showed diminution at $10{\mu}M$ (P < 0.001). 3. Sodium fluoride and sodium orthovanadate stimulated the percent collagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M$ to $10{\mu}M$ (P < 0.001). 4. Sodium fluoride and sodium orthovanadate stimulated the noncollagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M\;to\;10{\mu}M$ (P < 0.001). In conclusion, sodium fluoride and sodium orthovanadate stimulate the proliferation and activity of osteoblast by stimulation of DNA synthesis and collagen and noncollagen synthesis in osteoblast.

  • PDF

DEVELOPMENT OF POLYETHOXYLATED RETINAMIDE AS AN ANTl-AGINC AGENT

  • Song, Young-Sook;Chung, Bong-Yul;Chang, Min-Youl;Park, Mun-Eok;Lee, Sung-Jun;Cho, Wan-Goo;Kang, Seh-Hoon
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.145-154
    • /
    • 1999
  • A novel retinol derivative, polyethoxylated retinamide (Medimin A) was synthesized, as an anti-aging agent. Collagen synthesis, skin permeation, stability, and toxicity of Medimin A were evaluated and compared with those of retinol and retinyl palmitate. In vitro collagen synthesis was evaluated by quantitative assay of [$^3H$]-proline incorporation into collagenase sensitive protein in fibroblast cultures. For in vitro skin permeation experiments, Franz diffusion cells (effective diffusion area: $1, 766{\;}\textrm{cm}^2$) and the excised skin of female hairless mouse aged 8 weeks were used The stabilities of retlnoids were evaluated at two different temperature ($25{\;}^{\circ}C$ and $40{\;}^{\circ}C$) and under UV in solubilized state and in OW emulsion. To estimate the safety, acute oral toxicity, acute dermal toxicity, primary skin irritation, acute eye irritation and human patch test were performed The effect of Medimin A on collagen synthesis was similar to that of retinol. The skin permeability of Medimin A was higher than those of retinol and retinyl palmitate. The Medimin A was more stable than retinol and retinyl palmitate. Medimin A was nontoxic in various toxicological tests. These results suggest that Medimin A would be a good anti-aging agent for enhancing bioavailability and stability.

  • PDF

Changes of Facial Wrinkle after Topical Application of On Emulsion Containing Medimin A (Medimin A를 함유한 O/W 에멀전의 주름 개선 효과)

  • 박선규;장민열;김영득;정봉열;원영호;김진준;강세훈
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.23-36
    • /
    • 1999
  • Medimin A is a derivative of vitamin A which has been developed by coupling retinoic acid with polyethylene glycol(PEG) to enhance skin permeability and stability. We carried out the collagen synthesis and clinical test to examine the reducing effect of wrinkles by Medimin A. In vitro collagen synthesis was evaluated by quantitative assay of ($^3$H)-proline incorporation into collagenase sensitive protein in fibroblast cultures. Clinical test was evaluated by image analysis of skin replica, visual observation and self-estimated response of volunteers for 10 weeks. Medimin A stimulated about 40% in collagen synthesis. The area of main deep wrinkle on the skin replica was reduced 38.4% with topical application of O/W emulsion containing 0.2% Medimin A. The wrinkles on the eye region was also reduced 25.4%-44.1% by the visual observation and 93% of all volunteers responded that topical application of the O/W emulsion was showed some reducing effect of wrinkles after 10 weeks. From these results, we suggest that Medimin A is a potent anti-wrinkle agent by objective evaluation methods(in vitro collagen synthesis and image analysis of skin replica) and subjective evaluation methods(visual observation and self-estimated response of volunteers).

  • PDF

DEVELOPMENT OF POLYETHOXYLATED RETINAMIDE AS AN ANTI-AGING AGENT

  • Song, Young-Sook;Chung, Bong-Yul;Chang, Min-Youl;Park, Mun-Eok;Lee, Sung-Jun;Cho, Wan-Goo;Kang, Seh-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.145-154
    • /
    • 1999
  • A novel retinol derivative, polyethoxylated retinamide(Medimin A) was synthesized, as an anti-aging agent. Collagen synthesis, skin permeation, stability, and toxicity of Medimin A were evaluated and compared with those of retinol and retinyl palmitate. In vitro collagen synthesis was evaluated by quantitative assay of $[^3H]-proline$ incorporation into collagenase sensitive protein in fibroblast cultures. For in vitro skin permeation experiments, Franz diffusion cells(effective diffusion area: 1,766 $cm^2$) and the excised skin of female hairless mouse aged 8 weeks were used, The stabilities of retinoids were evaluated at two different temperature($25^{\circ}C\;and\;40^{\circ}C$) and under UV in solubilized state and in O/W emulsion. To estimate the safety, acute oral toxicity, acute dermal toxicity, primary skin irritation, acute eye irritation and human patch test were performed. The effect of Medimin A on collagen synthesis was similar to that of retinol. The skin permeability of Medimin A was higher than those of retinol and retinyl palmitate. The Medimin A was more stable than retinol and retinyl palmitate. Medimin A was nontoxic in various toxicological tests. These results suggest that Medimin A would be a good anti-aging agent for enhancing bioavailability and stability.

  • PDF

Effects of Anthriscus sylvestris Hoffmann Extract on the Biosynthesis of Collagen in Human Dermal Fibroblasts (사람 섬유아세포에서 전호(Anthriscus sylvestris Hoffmann)추출물이 콜라겐 생합성에 미치는 영향)

  • Lee, Woo-Jung;Kim, Yong-Kee;Kim, Su-Nam
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.240-245
    • /
    • 2012
  • In this study, we investigated the boosting effects on collagen biosynthesis of $Anthriscus$ $sylvestris$ ethanol extract (ASE) in human dermal fibroblasts. To obtain more effective fraction and subfraction for collagen biosynthesis, standard solvent partition and open column chromatography were performed. The EtOH extract, solvent fractions, and 8 EtOAc subfractions were tested for their collagen synthesis capacity by [$^3H$]Proline-incorporation and ELISA assay. ASE increased 25% of total collagen synthesis and 27% of procollagen biosynthesis. The total collagen biosynthesis was increased by EtOAc fraction and E6 subfraction to 28% and 50% respectively. Type I procollagens were also upregulated by EtOAc fraction and E6 subfraction to 30% and 47%, each. Taken together, our data suggest that potential anti-aging effect of ASE on skin is via increasing collagen biosynthesis and effective subtraction is E6 subfraction of EtOAc fraction.

Effects of Amomi, Semen Extract on Synthesis of Insulin-like Growth Factor-1 and Anti-wrinkle in Skin (사인추출물의 인슐린 유사 성장인자-3의 합성과 피부 노화 개선에 대한 효과)

  • Choi Gyu Ho;Kim Su Nam;Lee So Hee;Sung Dae Seok;Son Eui Dong;Lee Chang Hoon;Lee Byeong Gon;Jang Ih Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.389-392
    • /
    • 2004
  • We screened several materials to stimulate IGF-1 promoter activity using luciferase reporter assay and found that Amomi Semen extract (ASE) among them is the most powerful stimulator We also studied about the anti-wrinkle effect of ethanolic extract of Amoni Semen in vitro and in vivo. Semi-quantitative RT-PCR showed that the extract elevated the presence level of IGF-1 mRNA. And $[^3H]$ proline incorporation and semi-quantitative RT-PCR showed that the extract increased the expression of type-I collagen compared with vehicle in vitro and in vivo, respectively. Significant inhibition of MMP-1 expression was determined by ELISA and Western blot. Finally, topical treatment of the extract on hairless mouse's dorsal skin expanded the volume of collagen and dermal thickness. These results suggest that Amomi Semen may be a good candidate for improving extracellular matrix through the increase of collagen expression and inhibition of MMP-1 expression. Moreover, this study enables us to guess that IGF-1 stimulated by the extract may be involved in the mechanism of anti-wrinkle effect of it.

THE STUDY ON THE EFFECTS OF THE INSULIN-LIKE GROWTH FACTOR-I ON THE BIOLOGICAL ACTIVITY OF THE HUMAN PERIODONTAL LIGAMENT CELLS (Insulin-like growth factor-I 이 치주인대세포의 생물학적 활성도에 미치는 영향에 대한 연구)

  • Kim, Seong-Jin;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.219-237
    • /
    • 1994
  • The ultimate goal of clinical periodontal therapy is to achieve regeneration of a healthy connective tissue reattachment. Conventional therapy including scaling, root planing, gingival curettage, gingivectomy and flap procedures of various types results primarily in repair rather than regeneration of the periodontium. In order for periodontal regeneration to occur, progenitor periodontal ligament cells must migrate to the denuded root surface, attach to it, proliferate and mature into an organized and functional fibrous attachment apparatus. Polypeptide growth factors belong to a class of potent biologic mediators which regulate cell differentiation, proliferation, migration and metabolism. Insulin-like growth factor-I (IGF- I ) of these factors appear to have an important role in periodontal wound healing and bone formation. The purpose of this study is to evaluate the effects of IGF- I on the periodontal ligament cells to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were obtained from periodontal tissue explants culture of the first premolar tooth extracted for the orthodontic treatment. Cells were cultured in Dulbecco's modified Eagle medium(DMEM) with 10% fetal bovine serum. Fourth to seventh passage cells were plated in 24 well tissue culture plates and medium changed to serum-free medium prior to addition of growth factors. Cell proliferation was measured by the incorporation of $[^3H]-thymidine$ into DNA, Protein synthesis was determined by measurement of $[^3H]-proline$ incorporation into collagenase-digestible protein(CDP) and noncollagenous protein(NCP) according to the method of Peterkofsky and Diegelmann (1971), And alkaline phosphatase activity was measured as one parameter of osteoblastic differentiation. The results were as follows : The DNA synthetic activity was increased in a dose-dependent manner with IGF- I except for 0.1ng/ml concentration of IGF- I At the concentration of 10, 100ng/ml, IGF- I significantly increased the DNA synthetic activity(P<0.05) The total protein, collagen and noncollagen synthesis was increased in a dose-dependent manner with IGF- I except for 0.1ng/ml concentration of IGF- I. At the concentration of 1, 10, 100ng/ml, IGF- I significantly increased the total protein, collagen and noncollagen synthesis activity(P<0.95, P<0.001). The % of collagen was not effected according to the concentration of IGF- I. The alkaline phosphatase activity was increased in a dose-, time-dependent manner with IGF- I (10, 100ng/ml). In conclusions, the present study shows that IGF- I has a potentiality to enhance the DNA synthesis of periodontal ligament cells with including the increase of the total protein and collagen synthetic activity. The use of IGF- I to mediate biological stimulation of periodontal ligament cells shows promise for future therapeutic applications.

  • PDF