• Title/Summary/Keyword: Proline dehydrogenase

Search Result 11, Processing Time 0.026 seconds

Regulatory Characteristics of the Vibrio vulnificus putAP Operon Encoding Proline Dehydrogenase and Proline Permease

  • Lee Jeong-Hyun;Jeong So-Young;Choi Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1285-1291
    • /
    • 2006
  • The proline utilization (put) operon of Vibrio vulnificus consists of the putAP genes encoding a proline dehydrogenase and proline permease. The result of put-lux transcriptional fusion analysis suggests that the V vulnificus putAP operon is not autoregulated by the PutA protein. A putR null mutation decreased proline dehydrogenase activity and the level of the put transcripts, indicating that transcription of putAP is under the positive control of PutR. The deduced amino acid sequence of the putR was similar to those reported from other bacteria with high levels of identity. Chromatin IP and GST pull-down assays revealed that PutR specifically binds to the putAP promoter region in vivo, and interacts with CRP in vitro. Taken together, the results suggested that PutR exerts its effect on putAP expression by directly interacting with CRP bound to the upstream region of P$_{put}$.

Proline accumulation and transcriptional regulation of proline biothesynthesis and degradation in Brassica napus

  • Xue, Xingning;Liu, Aihua;Hua, Xuejun
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2009
  • To understand the molecular mechanism underlying proline accumulation in Brassica napus, cDNAs encoding ${\Delta}^1$-pyrroline-5-carboxylate synthetase (BnP5CS), ornithine $\delta$-aminotransferase (BnOAT) and proline dehydrogenase (BnPDH) were isolated and characterized. Southern blot analysis of BnP5CSs in B. napus and its diploid ancestors suggested a gene loss may have occurred during evolution. The expression of BnP5CS1 and BnP5CS2 was induced, while the expression of BnPDH was inhibited under salt stress, ABA treatment and dehydration, prior to proline accumulation. The upregulation of BnOAT expression was only detected during prolonged severe osmotic stress. Our results indicate that stress-induced proline accumulation in B. napus results from the reciprocal action of activated biosynthesis and inhibited proline degradation. Whether the ornithine pathway is activated depends on the severity of stress. During development, proline content was high in reproductive organs and was accompanied by markedly high expression of BnP5CS and BnPDH, suggesting possible roles of proline during flower development.

Identification and Functional Analysis of the putAP Genes Encoding Vibrio vulnificus Proline Dehydrogenase and Proline Permease

  • Kim, Hye-Jin;Lee, Jeong-Hyun;Rhee, Jee-Eun;Jeong, Hye-Sook;Choi, Hyun-Kyung;Chung, Hee-Jong;Ryu, Sang-Ryeol;Choi, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.318-326
    • /
    • 2002
  • The pathogenic marine bacterium Vibrio vulnificus is the causative agent of food-borne diseases such as life-threatening septicemia. To better understand this organism's strategies to survive osmotic stress, a mutant that was more sensitive to high osmolarity was screened from a library of mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, putAP genes encoding a proline dehydrogenase and a proline permease were identified and cloned from V. vulnificus. The amino acid sequences deduced from nucleotide sequences of putAP from V. vulnificus were 38 to $59\%$ similar to those of PutA and PutP reported from other Enterobacteriaceae. Functions of putAP genes were assessed by the construction of mutants, whose putAP genes were inactivated by allelic exchanges. When proline as the sole carbon or nitrogen source was used, the putA mutant was not able to grow to the substantial level, revealing the proline dehydrogenase is the only enzyme for metabolic conversion of proline into other amino acids. Although the growth rate of the putP mutant on proline as the sole carbon or nitrogen source was significantly reduced, the mutant still grew. This indicated that at least one more proline permease is produced by V. vulnificus. The putP mutant decreased approximately $2-log_10$ CFU/ml after a hyperosmotic challenge, while the parent strain decreased approximately $l-log_10$ CFU/ml. This result suggests that the gene product of putP contributes to the osmotic tolerance of V. vulnificus.

Ginseng Transformation of Betaine Aldehyde Dehydrogenase Gene Relative Salt Resistant through Somatic Embryogenesis (염류내성관련 유전자 Betaine Aldehyde Dehydrogenase Gene의 인삼 체세포 배발생을 통한 형질전환)

  • Yoon Young-Sang;Bae Chang-Hyu;Song Won-Seob;Yoon Jae-Ho;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • Korean ginseng(Panax ginseng C.A. Meyer) is very difficult to obtain stable production of qualified ginseng roots because of variable stresses in soil environments. In transformation of ginseng with betain aldehyde dehydrogenase gene, compounds synthesized for controlling osmotic pressure such as proline, glycine, betaine, polyols and sugar were accumulated in cell for salt resistance in transgenic plants. 2 Agrobactgerium conjugants were acquired with bet A and bet B genes for solt resistant plants. A. tumefaciens MP90/pBetA and A. tumefaciens MP90/pBetB were recombined for increasing the tolerance to salt stress. To confirm the transformation of the binary vector, tobacco plant was transformed, and the transformant can grow on media containing high concentration of kanamycin. To identify NPT 11, BetA and BetB genes of the transformants, the band on the agarose was confirmed by PCR and RT-PCR techniques. The transformants of ginseng with bet A and bet B genes were acquired on the phytohormone free basic MS media containing only antibiotics and 1M mannitol used for selection of transgenic plant, but the transfomation efficiency for BetA and BetB was very low.

Selection and Characterizations of Gamma Radiation-Induced Submergence Tolerant Line in Rice

  • Lee In-Sok;Kim Dong-Sub;hua Jin;Kang Si-Yong;Song Hi-Sup;Lee Sang-Jae;Lim Yong-Pyo;Lee Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2003
  • The combination of a radiation technique with an in vitro culture system was appiled to develop submergence tolerant rice. The 3,000 $M_3$ lines with an average 80 percent of fertile grain were utilized for the selection of submergence tolerance. Salt tolerant lines were selected based on high plant height, root length and root number after submergence in plastic pots. Of the lines tested, the tolerant line (403-6) showed a dramatic difference in morphological traits under submergence compared to its original variety (Dongjinbyeo). It was suggested that genetic variations between the original variety and $M_3$-403-6 did exist. The levels of $\alpha$-amylase and alcohol dehydrogenase activities were significantly increased in the mutant line compared to its original variety. The mutant with greater tolerance showed less electrolyte leakage indicating a greater membrane integrity and better survival. Also, this line was much more resistant to a salt stress of $1.25\%$ than the original variety. The proline level of the line was significantly (p<0.01> higher than that of the original variety. The relationships between the inhibition of growth caused by stress and the physiological changes in the plant cell were discussed.

Genetic regulation for the biosynthesis of glutamate family in Corynebacterium glutamicum (Corynebacterium glutamicum에서의 glutamate계 아미노산 생합성의 유전적 조절)

  • Kim In-Ju;Kyung Hee Min;Sae Bae Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.427-432
    • /
    • 1986
  • The regulation of three ammonia assimilatory enzymes, GDH (glutamate dehydrogenase), GS (glutamine synthetase) and GOGAT (glutamate synthase), has been examined in C. glutamicum. Three kinds of arginine auxotrophs blocked in each step of arginine biosynthetic pathway from glutamate were selected as arg 5, arg 6, arg 8. Histidine and tryptophan auxotrophs were also selected because histidine and tryptophan repressed GS biosynthesis in E. coli. These strains were cultured on the media containing nitrogen-excess and limited conditions, to compare the specific activities of ${\alpha}$-ketoglutarate dehydrogenase(${\alpha}-KGDH$), GDH, GS, GOGAT from the cell-free extracts. These results showed that enzyme levels of ${\alpha}-KGDH$ and GDH from 3 kinds of arginine auxotrophs, histidine and tryptophan auxotrophs in nitrogen-excess condition and those of GS and GOGAT in nitrogen limited condition were increased compared with opposite condition. The tryptophan and histidine auxotrophs showed higher level of glutamate and glutamine than parental strains and other mutants. it is assumed that the higher levels of ${\alpha-KGDH}$ and GDH from mutants in nitrogen-excess condition promoted the accumulation of glutamate and glutamine in fermentation broth. The inhibition of GS activities by ADP suggested that GS is regulated by energy charge in C. glutamicum. The results with histidine, tryptophan, glycine, alanine, serine and GMP implied that a system of feedback inhibition were effective. The GDH, GS and GOGAT biosynthesis in culture broth was markedly repressed by the nature and kinds of available nitrogen sources such as tryptophan, proline, glycine, alanine, serine and tyrosine.

  • PDF

Antioxidant Activity and Sensory Evaluation in Soy Sauce with Fruit, Stem, or Twig of Hovenia dulcis Thunb (헛개 열매, 줄기, 가지 간장의 항산화 활성 및 관능적 품질 특성)

  • Won, Sae Bom;Song, Hee-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.2
    • /
    • pp.258-265
    • /
    • 2013
  • Home-made soy sauces with or without Hovenia dulcis Thunb (Hutgae) originated from different parts such as fruits, stems, and twigs were prepared according to the Korean traditional procedure. Soy sauces supplemented with Hutgae were evaluated for their activities of 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH) and alcohol dehydrogenase (ADH), free amino acid profiles, and sensory quality. All soy sauce types containing Hutgae had a strong DPPH activity as compared to the general type of soy sauce without Hutgae (GSC). Among Hutgae groups, DPPH activities of soy sauce supplemented with Hutgae stems was higher than that of soy sauces with either Hutgae fruits or twigs. ADH activities of soy sauces with Hutgae ranged from 14% to 55%, thus indicating that the functional activity of Hutgae was not altered during soy sauce preparations. Total free amino acid content of GSC was 295.5 mg%, and that of soy sauce with Hutgae fruits (346.8 mg%) was the highest when compared to Hutgae stems (272.3 mg%) and Hutgae twigs (225.6 mg%). In amino acid profiles, aspartate, arginine, histidine, and lysine levels were higher in soy sauces with Hutgae compared to GSC, whereas isoleucine, leucine, and phenylalanine levels were lower. Particularly, high levels of aspartate, glutamate, threonine, and lysine were presented in Hutgae twigs, whereas for Hutgae fruits and Hutgae stems, the levels of serine, glycine and arginine, and proline and methionine were high, respectively. According to sensory evaluations, Hutgae stems were preferred than GSC, due to the lower offensive smell and higher umami tastes. These findings demonstrate that soy sauce with Hutgae stems has potential protective effects against hangovers, improves the taste, and implies a possible functional ingredient.

Component Analysis and Anti-Proliferative Effects of Ethanol Extracts of Fruits, Leaves, and Stems from Elaeagnus umbellata in HepG2 Cells (보리수나무 열매, 잎 및 줄기 에탄올 추출물의 함유성분 분석과 간암 세포 증식억제 효과)

  • Kim, Min-Ju;Lim, Jong-Soon;Yang, Seun-Ah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.828-834
    • /
    • 2016
  • The aim of this study was to evaluate the physicochemical properties and antioxidant and anti-proliferative activities of different plant parts of Elaeagnus umbellata Thunb. extracted with ethanol (EtOH). EtOH extract of stems presenting the highest content of polyphenols showed the strongest 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity ($EC_{50}=54.04{\mu}g/mL$). The total content of free amino acids decreased in the order of leaves (6,179.12 mg/100 g)> stems (1,211.69 mg/100 g)> fruits EtOH extract (378.88 mg/100 g), and asparagine (1,907.57 mg/100 g), ${\gamma}-aminobutyric$ acid (300.17 mg/100 g), and proline (233.48 mg/100 g) were the major free amino acid in leaves, stems, and fruits, respectively. Five phenolic compounds in each extract were measured by using liquid chromatography- tandem mass spectrometry, and gallic acid (98.95 mg/100 g) and (+)-catechin (1,575.99 mg/100 g) were present as major components in leaves and stems, respectively. EtOH extract of leaves showed the highest anti-proliferative activity against HepG2 cells as measured by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazoliumbromide and lactate dehydrogenase assay but had no effects on Chang liver cells.

Antigenic Proteins of Helicobacter pylori of Potential Diagnostic Value

  • Khalilpour, Akbar;Santhanam, Amutha;Lee, Chun Wei;Saadatnia, Geita;Velusamy, Nagarajan;Osman, Sabariah;Mohamad, Ahmad Munir;Noordin, Rahmah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1635-1642
    • /
    • 2013
  • Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (${\geq}$ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture-positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline-5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.