• Title/Summary/Keyword: Projection Onto Convex Set(POCS)

Search Result 7, Processing Time 0.022 seconds

Blocking-Artifact Reduction using Projection onto Adaptive Quantization Constraint Set (적응 양자화 제한 집합으로의 투영을 이용한 블록 현상 제거)

  • 정연식;김인겸
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.79-86
    • /
    • 2003
  • A new quantization constraint set based on the theory of Projection onto Convex Set(POCS) is proposed to reduce blocking artifact appearing in block-coded images. POCS-based postprocessing for alleviating the blocking artifact consists of iterative projections onto smoothness constraint set and quantization constraint set, respectively. In general, the conventional quantization constraint set has the maximum size of range where original image data can be included, therefore over-blurring of restored image is unavoidable as iteration proceeds. The projection onto the proposed quantization constraint set can reduce blocking artifact as well as maintain the clearness of the decoded image, since it controls adaptively the size of quantization constraint set according to the DCT coefficients. Simulation results using the proposed quantization constraint set as a substitute for conventional quantization constraint set show that the blocking artifact of the decoded image can be reduced by the small number of iterations, and we know that the postprocessed image maintains the distinction of the decoded image.

Boundary Artifacts Reduction in View Synthesis of 3D Video System (3차원 비디오의 합성영상 경계 잡음 제거)

  • Lee, Dohoon;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • This paper proposes an efficient method to remove the boundary artifacts of rendered views caused by damaged depth maps in the 3D video system. First, characteristics of boundary artifacts with the compression noise in depth maps are carefully studied. Then, the artifacts suppression method is proposed by the iterative projection onto convex sets (POCS) algorithm with setting the convex set in pixel and frequency domain. The proposed method is applied to both texture and depth maps separately during view rendering. The simulation results show the boundary artifacts are greatly reduced with improving the quality of synthesized views.

3D Mesh Watermarking Using Projection onto Convex Sets (볼록 집합 투영 기법을 이용한 3D 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Seong-Geun;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.81-92
    • /
    • 2006
  • This paper proposes a robustness watermarking for 3D mesh model based on projection onto convex sets (POCS). After designing the convex sets for robustness and invisibility among some requirements for watermarking system, a 3D-mesh model is projected alternatively onto two constraints convex sets until the convergence condition is satisfied. The robustness convex set are designed for embedding the watermark into the distance distribution of the vertices to robust against the attacks, such as mesh simplification, cropping, rotation, translation, scaling, and vertex randomization. The invisibility convex set are designed for the embedded watermark to be invisible. The decision values and index that the watermark was embedded with are used to extract the watermark without the original model. Experimental results verify that the watermarked mesh model has invisibility and robustness against the attacks, such as translation, scaling, mesh simplification, cropping, and vertex randomization.

3D Mesh Model Watermarking Based on POCS (POCS에 기반한 3D 메쉬 모델 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong;Lee Kuhn-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1592-1599
    • /
    • 2004
  • In this paper, we proposed the 3D mesh watermarking using projection onto convex sets (POCS). 3D mesh is projected iteratively onto two constraint convex sets until it satisfy the convergence condition. These sets consist of the robustness set and the invisibility set that designed to embed watermark Watermark is extracted without original mesh by using the decision values and the index that watermark is embedded. Experimental results verified that the watermarked mesh have the robustness against mesh simplification, cropping, affine transformation, and vertex randomization as well as the invisibility.

Post-processing Technique Based on POCS Using EZW (EZW를 이용한 POCS 기반의 후처리 기법)

  • Kim, Hyo-Kak;Kwon, Goo-Rak;Kim, Yoon;Ko, Sung-Jea
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.427-430
    • /
    • 2005
  • In this paper, we propose a new post-processing method, based on the theory of the projection onto convex sets (POCS) to reduce the blocking artifacts in decoded images. We propose a new smoothness constraint set (SCS) and its projection operator in the wavelet transform (WT) domain to remove unnecessary high-frequency components caused by blocking artifacts. We also propose a new method to find and preserve the original high frequency components of the image edge. Experimental results show that the proposed method can not only achieve a significantly enhanced subjective quality, but also have the PSNR improvement in the output image.

  • PDF

Post-processing Technique Based on POCS Using Wavelet Transform (웨이브릿 변환을 이용한 POCS 기반의 후처리 기법)

  • Kwon Goo-Rak;Kim Hyo-Kak;Kim Yoon;Ko Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we propose a new post-processing method, based on the theory of the projection onto convex sets (POCS) to reduce the blocking artifacts in decoded images. We propose a few smoothness constraint set (SCS) and its projection operator in the wavelet transform (WT) domain to remove unnecessary high-frequency components caused by blocking artifacts. We also propose a new method to find and preserve the original high frequency components of the image edge. Experimental results show that the proposed method can not only achieve a significantly enhanced subjective quality, but also have the PSNR improvement in the output image.

Fast Motion Artifact Correction Using l$_1$-norm (l$_1$-norm을 이용한 움직임 인공물의 고속 보정)

  • Zho, Sang-Young;Kim, Eung-Yeop;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.22-30
    • /
    • 2009
  • Purpose : Patient motion during magnetic resonance (MR) imaging is one of the major problems due to its long scan time. Entropy based post-processing motion correction techniques have been shown to correct motion artifact effectively. One of main limitations of these techniques however is its long processing time. In this study, we propose several methods to reduce this long processing time effectively. Materials and Methods : To reduce the long processing time, we used the separability property of two dimensional Fourier transform (2-D FT). Also, a computationally light metric (sum of all image pixel intensity) was used instead of the entropy criterion. Finally, partial Fourier reconstruction, in particular the projection onto convex set (POCS) method, was combined thereby reducing the size of the data which should be processed and corrected. Results : Time savings of each proposed method are presented with different data size of brain images. In vivo data were processed using the proposed method and showed similar image quality. The total processing time was reduced to 15% in two dimensional images and 30% in the three dimensional images. Conclusion : The proposed methods can be useful in reducing image motion artifacts when only post-processing motion correction algorithms are available. The proposed methods can also be combined with parallel imaging technique to further reduce the processing times.

  • PDF