• Title/Summary/Keyword: Project Life Cycle Cost

Search Result 172, Processing Time 0.031 seconds

INTEGRATED LIFE-CYCLE COST ANALYSIS CONSIDERING ENVIRONMENTAL COSTS: A HIGHWAY PROJECT CASE

  • Woo-Sik Jang;Heedae Park;Sungmin Kim;Seung Heon Han;Jong Seo Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.273-279
    • /
    • 2011
  • Concerns over the environment have spawned a number of research studies in the construction industry, as the construction of built environments and large infrastructures involves diverse environmental impacts and loads of hazardous emissions. Many researchers have attempted to quantify these environmental loads, including greenhouse gases, carbon dioxide, nitrogen dioxide, and sulfur dioxide, to name a few. However, little research has been conducted regarding integrating the life-cycle assessment (LCA) of environmental loads with the current life-cycle cost analysis (LCCA) approach. This study aims to estimate the environmental loads as a monetary value using the European Climate Exchange (ECX) rate and, then, to integrate those impacts with the pure construction cost. Toward this end, this study suggests an integrated approach that takes into account the environmental effect on the evaluation of the life-cycle cost (LCC). The bill of quantity (BOQ) data of a real highway project are collected and analyzed for this purpose. As a result, considering the environmental loads in the pavement process, the total LCC increased 16% from the traditional LCC cost. This study suggests an integrated approach that will account the environmental effect on the LCC. Additionally, this study is expected to contribute to better decision-making, from the perspective of more sustainable development, for government as well as for contractors.

  • PDF

A Study on the Effects of ICT Infrastructure Cost on Information System Life Cycle (정보시스템 수명주기에 인프라가 미치는 영향관계에 대한 연구)

  • Moon, Heoungkeun;Kim, Jeongho;Lee, Seogjun;Park, Sungsik
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • There are many studies on the project planning, project management and quality management. The cost of the new project takes only 20% of system's lifetime resource and the costs of the maintenance and infrastructure take more than 80%, so the study on the maintenance is much more important than the study on the new project. There has been many studies on the economic life cycle of the system using it's maintenance cost, but no studies on it's infrastructure cost. This paper provides how we can adapt infrastructure cost, which takes more than 40% of system's life cycle cost, to the economic life cycle of the system and its effects on the system's economic life cycle.

Life Cycle Cost Breakdown Structure Development of Buildings through Delphi Analysis

  • Jeong, Jae-Hyuk;Shin, Han-Woo;Ryu, Han-Guk;Kim, Gwang-Hee;Kim, Tae-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.528-538
    • /
    • 2012
  • With domestic construction projects becoming bigger, more specialized and more advanced, the construction industry is striving to improve quality and quantity, and is diversifying functions and shapes. Nevertheless, the process of a construction project causes problems when we estimate construction price, because the cost breakdown structures are different in each step. The primary aim of this study was to estimate building life cycle cost using the Delphi method. The cost breakdown structure for life cycle cost was classified into planning, design, construction, maintenance and waste disposal, and each detailed classification was determined by estimating life cycle cost. Moreover, the developed cost breakdown structure is verified by consulting with experts to secure objectivity and validity.

THE RESEARCH ON CONCEPTUAL MODEL OF LNG PLANT PROJECT PLANNING EXPERT SYSTEM

  • Moon-Sun Park;Young-Ai Kim;Seung-Wook Lee;Sung-Ryul Bae;Hyun-Wook Kang;Byoung-Jun Min;Yong-Su Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1570-1575
    • /
    • 2009
  • The purpose of this research is to propose the conceptual model of Scenario-based Project Planning Expert System which has not been used in domestic LNG plant industry. This research examines data on the plant project planning expert system of domestic and oversea, analyzes the components of project planning expert systems and benchmark excellent cases. The conceptual model of LNG plant project planning expert system is established through the procedure as has been noted above. The results of this research are as follows: First, this research draws out such components of LNG plant project planning expert system as feasibility, cost control, contract management and risk management. Second, this research proposes the conceptual model of LNG plant project planning expert system which core module is consist of feasibility evaluation, life cycle cost evaluation and decision making. Finally, each module of LNG plant project planning expert system would be integrated into the Scenario-based Project Planning Expert System.

  • PDF

The Study on Application of Fast Track Method for Dam Project Life Cycle′s Analysis (댐 공사에서의 Fast Track을 적용한 생애주기분석에 관한 연구)

  • Yoon, Jae-Ho;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.715-724
    • /
    • 2003
  • It is true that SOC facilities, such as dams, need long life cycles since more time has to be invested for the phases of planning, examination, feasibility study, design, contract, construction, and maintenance. This longer life cycle is easily exposed to the risk. And thus, brings additional cost by the delayed project, convenient loss according to the additional run of use, and benefit lose of not to using the facilities. So, the purpose of this study is to try to find a solution to reduce these time consuming problems which could diminish the whole national competition. Hence, this study is to show efficient, systematical project performance and network model by using reciprocal analyses between the construction period and cost based on economical analysis of each phase of life cycles. In addition, on the basis of these outputs, the Fast Track Method is suggested as an alternative solution as a new Approach in Life Cycle's Analysis.

Life Cycle Cost Analysis of Primary Cooling System by Systematic Support Cost (각종지원금제도에 의한 냉열원시스템의 라이프 사이클 코스트 분석)

  • Kim, C.M.;Jung, S.S.;Choi, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study is to analyze the life cycle cost of primary cooling system by systematic support cost. Life Cycle Cost(LCC) is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. In order to select economical primary cooling system in early heat source plan stages, the research investigates cost items and cost characteristics during project process phases such as planning/design, construction, maintenance /management, and demolition/sell phases. The study also analyze the life cycle cost by capacity leading to suggest the most economical primary cooling system by systematic support cost.

Implementing an Application Tool of Life Cycle Cost Analysis (LCCA) for Highway Maintenance and Rehabilitation in California, USA

  • Kim, Changmo;Lee, Eul-Bum
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.376-380
    • /
    • 2015
  • Life-Cycle Cost Analysis (LCCA) for highway projects is known as an effective analytical technique that uses economic principles to evaluate long-term alternative investment options, especially for comparing the values of alternative pavement design structures and construction strategies. In the Unites States, the 2012 Moving Ahead for Progress in the 21st Century Act (MAP-21) amended the United States Code to mandate that the United States Government Accountability Office (GOA) conducts a study of the best practices for calculating life-cycle costs and benefits for the federally funded highway projects in 2013. The RealCost 2.5CA program was developed and adapted as an official LCCA tool to comply with regulatory requirements for California state highway projects in 2013. Utilization of this California-customized LCCA software helps Caltrans to achieve substantial economic benefits (agency cost and road user cost savings) for highway projects. Proper implementation of LCCA for roadway construction and rehabilitation would deliver noticeable savings of agency's roadway maintenance cost especially in developing counties where financial difficulties exist.

  • PDF

Quantitative estimation system development for project similarity (주요 건물군의 유사도 정량화 측정 시스템)

  • Lee, Eun-Ji;Choi, Byoung-Il;Ko, Yong-Ho;Han, Seung-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.162-163
    • /
    • 2014
  • Operation and maintenance stage consists the largest portion of project life cycle cost. Appropriate management and analysis of such stages have massive effect on the total project cost. The effective prediction of optimized repair period is one of main factors in ㅌ management. However, it has been analyzed that the prediction of appropriate repair period revealed limitations in reliability. Therefore, this study suggests a methodology of repair period prediction by dividing finished projects into similar groups with same properties to be compared with the target project using quantitative variables.

  • PDF

Probability- based Life Cycle Cost Analysis of Railroad Structures (확률적 방법에 의한 철도시설물의 LCC 분석)

  • Sho Byung-Choon;Choi Young-Min;Cho Sun-Kyu;Shin Kyung-Chul;Jung Jae-Dong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.971-976
    • /
    • 2004
  • The management of railroad structures is more difficult and complicate because there are many structures such as rail, bridge, tunnel, station, and so on. Therefore, LCC(Life Cycle Cost) analysis of railroad structures as public infrastructure must contain a maintenance cost as well as an initial cost in order to make a more effective management during the life cycle on the design phase. This paper presents a cost classification scheme considering user costs such as value of delayed time of passenger and freight. Also, in this study it is developed a probabilistic life cycle cost(PLCC) analysis model of railroad structures taking into account uncertainties and variations of input variables in order to analyze LCC. It may be stated that the model proposed in this study can greatly contribute to the making optimal decision, the estimate of the maintenance cost and the allocate of budget in the project of railroad structures.

  • PDF

Life Cycle Cost Analysis for Korea High-Speed Rail Project (한국형 고속전철 시스템의 비용분석)

  • 이태형;목진용;박춘수
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.376-381
    • /
    • 2002
  • In this study, we have analyzed the cost of korea high-speed rail project. The predicted cost in planning phase and adjustment data to 5th year are collected. Then, predicted cost is compared with adjustment in year/item/system base. We make a project history table for criteria to review project history and research & development activity. We have developed CBS(cost breakdown structure) and allocated adjustment data to them. It is shown that cost prediction related to research St development activity in planning phase is relatively correct.

  • PDF