• Title/Summary/Keyword: Project Engineering

Search Result 7,046, Processing Time 0.031 seconds

Changes in Landscape Characteristics of Stream Habitats with the Construction and Operation of River-Crossing Structures in the Geum-gang River, South Korea (금강에서 횡단구조물의 설치와 운영에 따른 하천 서식처의 경관 특성 변화)

  • Kim, Dana;Lee, Cheolho;Kim, Hwirae;Ock, Giyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.64-78
    • /
    • 2021
  • This study was conducted to find out the effect of the construction and operation of river-crossing structures on the habitat landscape characteristics in the Geum-gang River, South Korea. A total of three study reaches were selected in the downstream of the Daecheong Dam: the Buyong-ri reach, which is a control that is not affected by the construction and operation of the weir of the Four Rivers Project and Sejong-bo Weir reach and Gongju-bo Weir reach of the upper and lower sections of each weir that are affected by the weir construction and operation. The habitat type was classified, and then the structural characteristics of the landscape were analyzed using aerial photographs taken before and after the construction of the Daecheong Dam, before and after the construction of the weir, and before and after the weir gate operation. After the construction of Daecheong Dam in Geum River, the area of the bare land greatly decreased, and the area of grassland and woodland increased in the downstream of the dam. In addition, the patch number in the river landscape increased, the patch size decreased, and the landscape shape index and the habitat diversity increased. Therefore, after the construction of the dam, the bare land habitat was changed to a vegetated habitat, and the habitat was fragmented and diversified in the downstream of the dam. After the construction of the weirs, the area of open water increased by 18% in the Sejong-bo reach and by 90% in the Gongju-bo reach, and the landscape shape index of the open water decreased by 32% in the Sejong-bo reach and by 35% in the Gongju-bo reach, and the habitat diversity index decreased to 25% in the Sejong-bo reach and to 24% in the Gongju-bo reach. Therefore, the open water habitat was expanded, the shape of the habitat was simplified, and the habitat diversity decreased according to the construction of the weirs. After water-gate opening of the weir, the bare land that disappeared after the construction of the weir reappeared, and the landscape shape index and habitat diversity index increased in both terrestrial and open water habitats. Therefore, it was found that the landscape characteristics of the river habitats were restored to the pre-construction of the weir by the operation of the weir gate. The effect of weir gate opening was delayed in the downstream than in the upstream of the weir. Although the characteristics of the landscape structure in the river habitat changed due to the construction of the river-crossing structures, it is thought that proper technology development for the ecological operation of the structures is necessary as the habitat environments can be restored by the operation of these structures.

The Design Improvement Plan of Seoul Forest Visitor Centers for Little Children (서울시 유아숲체험장의 공간 개선 방안)

  • Kim, Minjung;Jeong, Wookju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.6
    • /
    • pp.49-63
    • /
    • 2021
  • The Forest Visitor Centers for Little Children who means preschoolers is an educational facility that achieves holistic growth by experiencing forests, and it should not be completed by installing specific facilities in the forest environment, but should be a space where preschoolers can play freely in the forest environment themselves. This study comprehensively evaluated the current status of Seoul Forest Visitor Centers for Little Children and suggested space improvement measures to enhance the effectiveness of forest experience. Through the theoretical review, seven spatial elements that enhance the effect of forest experience and six areas composing outdoor play areas were derived to prepare an analysis table for current status evaluation, and field survey studies were conducted on 24 centers in Seoul. Through expert interviews, the physical status was examined from the perspective of childhood education and the experiences of the users were summarized. As a result of the study, the Seoul Forest Visitor Center for Little Children is classified into six types according to the location characteristics and spatial structure, and has the characteristics of each type. The effectiveness of forest experience can be enhanced by identifying and revealing the environmental strengths of individual centers. In the case of outdoor experience learning zones, the proportion of exercise play areas was very large. By evenly organizing the forest experience space for each area, it will be possible to provide more diverse experiences to preschoolers. However, the status of uniform facility-oriented cannot be viewed as a fragmentary factor that lowers the effect of forest experience. The key to increasing the effect of forest experience by inducing creative activities is the spatial composition that considers the surrounding natural environment. Facilities should be a medium to help preschoolers' interest move into the forest. This study prepared data to understand the average physical status of the Seoul Forest Visitor Center for Little Children and suggested space improvement measures to increase the effectiveness of forest experience. This can be used as basic data for research to improve the quality level of the Seoul Forest Visitor Center for Little Children about 10 years after the project was implemented.

Science and Technology ODA Promotion of Korea through ICT of Global Problem Solving Centers -Suggestion on the mid- and short-term projects promotion of science and technology ODA roadmap- (글로벌문제해결거점 ICT화를 통한 한국형 과학기술 ODA 추진 -과학기술 ODA 중·단기 과제 추진에 대한 제언-)

  • Jung, Woo-Kyun;Shin, Kwanwoo;Jeong, Seongpil;Park, Hunkyun;Park, Eun Sun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.162-171
    • /
    • 2021
  • The Korean government proposed the K-SDGs in 2019 to promote the UN SDGs, but the role and tasks of science and technology, an important means of implementing the SDGs, have not been materialized. Accordingly, the role of science and technology ODA for the SDGs was established through the Ministry of Science and ICT's policy research project 'Science and Technology ODA Promotion Roadmap for Spreading the New Southern Policy and Realizing the 2030 SDGs'. In addition, goals, strategies, and core tasks for the next 10 years were derived in 10 fields such as water, climate change, energy, and ICT. In this paper, we analyze 30 key tasks of the ODA promotion roadmap for science and technology for the realization of SDGs, and propose mid- and short-term tasks and implementation plans for effective roadmap promotion. Among the key tasks in each field, four common elements were derived: ICT/smartization, a global problem-solving center, cooperation/communication platform, and business model/startup support platform/living lab that can create and integrate roadmap implementation conditions. In addition, the four mid- and short-term tasks, 1) Establishment of science and technology ODA network, 2) Establishment of living lab business platform linked to start-up support business, 3) Local smartization of recipient countries, and 4) Expand and secure sustainability of global problem-solving centers, were set in relation to the implementation of the detailed roadmap. For the derived mid- and short-term tasks, detailed implementation plans based on the ICTization of global problem-solving centers were presented. The implementation of the mid- and short-term tasks presented in this paper can contribute to the more effective achievement of the science and technology ODA roadmap, and it is expected that Korea's implementation of SDGs will also achieve high performance.

A Correlation Analysis between International Oil Price Fluctuations and Overseas Construction Order Volumes using Statistical Data (통계 데이터를 활용한 국제 유가와 해외건설 수주액의 상관성 분석)

  • Park, Hwan-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.273-284
    • /
    • 2024
  • This study investigates the impact of international oil price fluctuations on overseas construction orders secured by domestic and foreign companies. The analysis employs statistical data spanning the past 20 years, encompassing international oil prices, overseas construction orders from domestic firms, and new overseas construction orders from the top 250 global construction companies. The correlation between these variables is assessed using correlation coefficients(R), determination coefficients(R2), and p-values. The results indicate a strong positive correlation between international oil prices and overseas construction orders. The correlation coefficient between domestic overseas construction orders and oil prices is found to be 0.8 or higher, signifying a significant influence. Similarly, a high correlation coefficient of 0.76 is observed between oil prices and new orders from leading global construction companies. Further analysis reveals a particularly strong correlation between oil prices and overseas construction orders in Asia and the Middle East, potentially due to the prevalence of oil-related projects in these regions. Additionally, a high correlation is observed between oil prices and orders for industrial facilities compared to architectural projects. This suggests an increase in plant construction volumes driven by fluctuations in oil prices. Based on these findings, the study proposes an entry strategy for navigating oil price volatility and maintaining competitiveness in the overseas construction market. Key recommendations include diversifying project locations and supplier bases; utilizing hedging techniques for exchange rate risk management, adapting to local infrastructure and market conditions, establishing local partnerships and securing skilled local labor, implementing technological innovations and digitization at construction sites to enhance productivity and cost reduction The insights gained from this study, coupled with the proposed overseas expansion strategies, offer valuable guidance for mitigating risks in the global construction market and fostering resilience in response to international oil price fluctuations. This approach is expected to strengthen the competitiveness of domestic and foreign construction firms seeking success in the international arena.

Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies (적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로)

  • Heo, Junyoung;Yang, Jin Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.