• 제목/요약/키워드: Project Duration

검색결과 373건 처리시간 0.024초

공정이행관리를 위한 선행작업관리 시안 (A Study on the Method of Preliminary Works Management for a Schedule Performance Management)

  • 박홍태;송용선
    • 한국산학기술학회논문지
    • /
    • 제9권3호
    • /
    • pp.757-764
    • /
    • 2008
  • 효율적인 공정이행관리를 통해서 건설공사 일정의 불필요한 공기지연을 사전에 예방하고, 나아가 품질확보를 위하여 각 공정의 내용을 정확하게 숙지하고 관리하는 일이 중요하다. 더욱 중요한 것은 공사계획에 따른 공정이 원활하게 진행될 수 있도록 각각의 공정에 필요한 선행작업들을 체계화하여 관리하는 것이다. 이를 위하여 본 연구에서는 아파트공사를 대상으로 이정표 중심, 작업공종 중심, 활동 중심, 작업 담당자 중심으로 구분하여 선행작업관리 시안을 제시하였다.

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi;Ghofrani, Mohammad B.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.702-708
    • /
    • 2019
  • This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.

DSM을 활용한 모듈러 건축 설계단계에서의 제작 및 시공 정보 반영 및 재시공 감소 방안 (Design and Planning Process Management for Reducing Rework in Modular Construction Using Dependency Structure Matrix (DSM))

  • 현호상;이현수;이정훈;박문서
    • 대한건축학회논문집:구조계
    • /
    • 제35권2호
    • /
    • pp.29-36
    • /
    • 2019
  • Modular construction has benefits such as short construction duration and high productivity owing to the production in factory and owing to simultaneous on-site work. However, rework occurs in modular construction and the rework affects the efficiency of modular construction. The almost of causes of rework are exist in design process. To reduce the cause of rework, the information flow of the design process should be managed and the plan to reduce rework should be included. However, the modular construction has complex process because of impeded unit production so it is hard to manage the information flow in design process. Moreover, when the plan to reduce rework is included, the design process will be more complicated. Therefore, the objective of this research is to suggest the design process including the rework reduction plan and to alleviate the complexity of design process by using Dependency Structure Matrix(DSM). By using DSM, the iteration and feedback in design process is reduced and it can be expected that rework in modular project can be reduced by using suggested design process.

Prediction of duration and construction cost of road tunnels using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Nejati, Hamid Reza;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.65-75
    • /
    • 2022
  • Time and cost of construction are key factors in decision-making during a tunnel project's planning and design phase. Estimations of time and cost of tunnel construction projects are subject to significant uncertainties caused by uncertain geotechnical and geological conditions. The Gaussian Process Regression (GPR) technique for predicting ground condition and construction time and cost of mountain tunnel projects is used in this work. The GPR model is trained with data from past mountain tunnel projects. The model is applied to a case study in which the predicted time and cost of tunnel construction using the GPR model are compared with the actual construction time and cost for model validation and reducing the uncertainty for the future projects. In addition, the results obtained from the GPR have been compared with to other models of artificial neural network (ANN) and support vector regression (SVR) that the GPR model provides more accurate results.

A CBR-BASED COST PREDICTION MODEL FOR THE DESIGN PHASE OF PUBLIC MULTI-FAMILY HOUSING CONSTRUCTION PROJECTS

  • TaeHoon Hong;ChangTaek Hyun;HyunSeok Moon
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.203-211
    • /
    • 2009
  • Korean public owners who order public multi-family housing construction projects have yet to gain access to a model for predicting construction cost. For this reason, their construction cost prediction is mainly dependent upon historic data and experience. In this paper, a cost-prediction model based on Case-Based Reasoning (CBR) in the design phase of public multi-family housing construction projects was developed. The developed model can determine the total construction cost by estimating the different Building, Civil, Mechanical, Electronic and Telecommunication, and Landscaping work costs. Model validation showed an accuracy of 97.56%, confirming the model's excellent viability. The developed model can thus be used to predict the construction cost to be shouldered by public owners before the design is completed. Moreover, any change orders during the design phase can be immediately applied to the model, and various construction costs by design alternative can be verified using this model. Therefore, it is expected that public owners can exercise effective design management by using the developed cost prediction model. The use of such an effective cost prediction model can enable the owners to accurately determine in advance the construction cost and prevent increase or decrease in cost arising from the design changes in the design phase, such as change order. The model can also prevent the untoward increase in the duration of the design phase as it can effectively control unnecessary change orders.

  • PDF

준공현장의 분쟁해결방안으로서의 사후적 공정분석에 관한 연구 (Studies on Post Contract Schedule Analysis)

  • 고기혁;박성필;김용길
    • 한국중재학회지:중재연구
    • /
    • 제32권4호
    • /
    • pp.103-141
    • /
    • 2022
  • Traditionally, schedule analysis in Korea has been used, mainly through the Critical Path Method, to evaluate the claim for extension of time and/or the amount of liquidated damages for delay. Critical path method, however, cannot identify the delay event and its impact occurred in non-critical path especially in multi facility projects. In multi facility projects that comprise several independent but related facilities or structures, each facility has its own facility critical path the duration of which will be impacted by facility specific critical delays. Thus, only through the non-critical delay analysis along with the critical delay analysis damages not attributable to contractors may be remedied in full. Because all the records and pictures can reveal what has actually happened in post contract review, only the retrospective analysis rather than the prospective analysis based on the assumptions can establish the cause and allocate the each parties' responsibilities appropriately.

CMIP6 기후변화 자료를 이용한 국내 미래 극한강우의 예측 (Future projections of extreme precipitation by using CMIP6 database at finer scales over South Korea)

  • 김종호;도이반만
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.368-368
    • /
    • 2021
  • 기후 변화로 인한 극한사상의 크기와 빈도 변화를 예측하는 것은 수공 인프라 설계에 있어 주된 관심사 중 하나이다. 보통 극한사상에 대한 강도, 빈도, 지속시간에 대한 정보가 필요하며, 이는 일반적으로 IDF(Intensity-Duration-Frequency) 곡선으로부터 추출된다. 최근 CMIP(Coupled Model Intercomparison Project) 6단계에서 새로운 이산화탄소 배출 시나리오와 업데이트된 기후모델을 이용하여 미래의 기후에 대한 예측 시계열을 발표했으므로, 미래 기후 변화 시나리오를 기반으로 IDF 곡선을 새로 추정하고 미래 기간의 변화를 평가할 필요가 있다. 본 연구에서는 한국의 40개 지역에 대해 일단위 자료를 시단위로 축소(downscaling)한 후, 확률론적 일기생성기(stochastic weather generator)를 이용하여 30년 시단위 시계열을 100개의 앙상블로 생성하였다. 생성된 시계열로부터 연최대강수량 시계열을 재구성하여 GEV 분포와 gumbel 분포에 적용하였다. 적합도 검정(Anderson-Darling(AD) 검정 및 Kolmogorov-Smirnov(KS) 검정)을 수행하였으며, 과거 자료를 기반으로 생성된 IDF 곡선과 비교 검증하였다. CMIP5의 기후변화 자료를 사용한 결과와 CMIP6 기후변화의 결과를 비교하였으며, 본 연구의 주요 결과는 다음과 같다. (1) 향후 강우 강도는 증가할 것이며 강우 강도의 증가는 말기에 현저하게 관찰될 것이다. (2) 시간별 강우 강도의 미래 변화가 일단위 강우 강도보다 더 크다. (3) 강우 강도의 불확실성을 정량화하기 위해 앙상블을 사용해야 한다. (4) 강우 강도의 미래 변화에 대한 공간적인 경향이 확인된다. 시단위 시계열 앙상블을 생성하여 추정된 IDF 곡선에 대한 정보는 기후 변화의 영향을 평가하고 적절한 적응 및 대응 전략을 개발하는 데 도움이 될 것이다.

  • PDF

Automatic Panelizing Algorithms of Free-form Buildings

  • Lee, Donghoon;Lim, Jeeyoung;Habimana, Gilbert;Lee, Taick-Oun;Kim, Sunkuk
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.425-428
    • /
    • 2015
  • New technologies using a CNC machine are being developed to reduce the production cost of free-form buildings. For production of free-form members using such technologies, vast free-form buildings should be first split into multiple panels that are productible. Taking into consideration of the curved surface of free-form members, the segmented free-form panels may vary in shape and size, which may cause a lot of errors. In addition, it is time-consuming for the work. However, the current panelizing work is completed with the trials and errors of engineers and architectural designers even in large-scale projects, which results in increased construction duration and cost. Thus, it is necessary to develop a technology for panelizing free-form panels so as to maximize the economic feasibility of production technologies for free-form concrete members. The study intends to develeop automatic panelizing algorithms of free-form buildings considering the curved surface and size of free-form panels and the production conditions. The developed algorithms will be useful in applying the production technologies of free-form buildings using CNC machine and reducing the cost.

  • PDF

Application of BIM-integrated Construction Simulation to Construction Production Planning

  • Chang, SooWon;Son, JeongWook;Jeong, WoonSeong;Yi, June-Seong
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.639-640
    • /
    • 2015
  • Traditional construction planning based on historical data and heuristic adjustment can no longer incorporate all the operational details and guarantee the expected performance. The variation between the expected and the actual production leads to cost overruns or delay. Although predicting reliable productivity on construction site is getting more important, the difficulty of this increases. In this regard, this paper suggested to develop BIM-integrated simulation framework. This framework could predict productivity dynamics by considering factors affecting on construction productivity at operational phase. We developed the following processes; 1) enabling a BIM model to produce input data for simulation; 2) developing the construction operation simulation; 3) running simulation using BIM data and obtaining productivity results. The BIM-integrated simulation framework was tested with structural steel erection model because steel erection work is one of the most critical process influencing on the whole construction budget and duration. We could improve to predict more dynamic productivity from this framework, and this reliable productivity helps construction managers to optimize resource allocation, increase schedule reliability, save storage cost, and reduce material loss.

  • PDF

THE PRIORITIZATION OF IMPROVEMENT NEEDS FOR UNDERGROUND CONSTRUCTION ENVIRONMENT

  • Sanggyu Lee;Goune Kang;Chang-Won Kim;Hunhee Cho;Kyung-In Kang
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.111-114
    • /
    • 2013
  • Underground construction requires long construction duration and a variety of equipment, and environmental management and improvement of its activities are considered necessary. For the purpose of the environmental improvement of underground construction activities, the appropriate development of technologies to reduce generated pollutants is mandatory. However, the analysis of the needs of technology development and the evaluation of development priorities should take precedence. In this research, the needs for the improvement of each construction activity are analyzed as a preliminary study for a proposed technology development plan to improve the environmental performance of underground construction. Firstly, environmental problem factors caused by underground construction activities are determined while underground construction types, methods, and activities are classified. A questionnaire survey to determine the needs for the improvement of each activity is then carried out. The survey indicated that the most urgent activity to be improved is that of cutting excavation, which causes environmental problems associated with flying dust. This study could be used as a basis for a technology development plan for the environmental improvement of underground construction activities. The result of this study, the priority of improvement needs, contributes to the effective allocation of a limited Research and Development (R&D) budget.

  • PDF