• 제목/요약/키워드: Programmed cell death ligand 1

검색결과 35건 처리시간 0.03초

Peripheral Blood Immune Cell-based Biomarkers in Anti-PD-1/PD-L1 Therapy

  • Kyung Hwan Kim;Chang Gon Kim;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.8.1-8.15
    • /
    • 2020
  • Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anticancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • 제46권3호
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

T-Cell Immunoglobulin Mucin 3 Expression on Tumor Infiltrating Lymphocytes as a Positive Prognosticator in Triple-Negative Breast Cancer

  • Byun, Kyung Do;Hwang, Hyo Jun;Park, Ki Jae;Kim, Min Chan;Cho, Se Heon;Ju, Mi Ha;Lee, Jin Hwa;Jeong, Jin Sook
    • Journal of Breast Cancer
    • /
    • 제21권4호
    • /
    • pp.406-414
    • /
    • 2018
  • Purpose: T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) is an emerging immune response molecule related to T-cell anergy. There has been tremendous interest in breast cancer targeting immune checkpoint molecules, especially in the triple-negative breast cancer (TNBC). This study was designed to investigate TIM-3 expression on tumor infiltrating lymphocytes (TILs), its relationships with clinicopathological parameters and expression of programmed death receptor 1 (PD-1)/programmed death receptor ligand 1 (PD-L1), and its prognostic role. Methods: Immunohistochemistry on tissue microarray blocks produced from 109 samples of invasive ductal carcinoma type TNBC was performed with antibodies toward TIM-3, PD-1, PD-L1 and breast cancer-related molecular markers. Associations between their expression and clinicopathological parameters as well as survival analyses were performed. Results: TIM-3 was expressed in TILs from all 109 TNBCs, consisting of 17 cases (<5%), 31 cases (6%-25%), 48 cases (26%-50%), and 13 cases (>51%). High TIM-3 was significantly correlated with younger patients (p=0.0101), high TILs (p=0.0029), high tumor stage (p=0.0018), high PD-1 (p=0.0001) and high PD-L1 (p=0.0019), and tended to be associated with higher histologic grade, absence of extensive in situ components and microcalcification. High TIM-3 expression was significantly associated with a combinational immunophenotype group of high PD-L1 and high PD-1 (p<0.0001). High TIM-3 demonstrated a significantly better disease-free survival (DFS) (p<0.0001) and longer overall survival (OS) (p=0.0001), together with high TILs and high PD-1. In univariate survival analysis, high TIM-3 showed reduced relapse risk (p<0.0001) and longer OS (p=0.0003), together with high PD-1 expression. In multivariate analysis, high TIM-3 was statistically significant in predicting prognosis, showing better DFS (hazard ratio [HR], 0.0994; 95% confidence interval [CI], 0.0296-0.3337; p=0.0002) and longer OS (HR, 0.1109; 95% CI, 0.0314-0.3912; p=0.0006). Conclusion: In this study, we demonstrate that TIM-3 expression is an independent positive prognostic factor in TNBC, despite its association with poor clinical and pathologic features.

Dancing with the Surgeon: Neoadjuvant and Adjuvant Immunotherapies from the Medical Oncologist's Perspective

  • Sehhoon Park
    • Journal of Chest Surgery
    • /
    • 제56권2호
    • /
    • pp.67-74
    • /
    • 2023
  • Perioperative treatment with conventional cytotoxic chemotherapy for resectable non-small cell lung cancer (NSCLC) has proven clinical benefits in terms of achieving a higher overall survival (OS) rate. With its success in the palliative treatment of NSCLC, immune checkpoint blockade (ICB) has now become an essential component of treatment, even as neoadjuvant or adjuvant therapy in patients with operable NSCLC. Both pre- and post-surgery ICB applications have proven clinical efficacy in preventing disease recurrence. In addition, neoadjuvant ICB combined with cytotoxic chemotherapy has shown a significantly higher rate of pathologic regression of viable tumors compared with cytotoxic chemotherapy alone. To confirm this, an early signal of OS benefit has been shown in a selected population, with programmed death ligand 1 expression ≥50%. Furthermore, applying ICB both pre- and post-surgery enhances its clinical benefits, as is currently under evaluation in ongoing phase III trials. Simultaneously, as the number of available perioperative treatment options increases, the variables to be considered for making treatment decisions become more complex. Thus, the role of a multidisciplinary team-based treatment approach has not been fully emphasized. This review presents up-to-date pivotal data that lead to practical changes in managing resectable NSCLC. From the medical oncologist's perspective, it is time to dance with surgeons to decide on the sequence of systemic treatment, particularly the ICB-based approach, accompanying surgery for operable NSCLC.

Epstein-Barr Virus-Associated Gastric Carcinoma and Specific Features of the Accompanying Immune Response

  • Cho, Junhun;Kang, Myung-Soo;Kim, Kyoung-Mee
    • Journal of Gastric Cancer
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is one of the four subtypes of gastric carcinoma (GC), as defined by the novel classification recently proposed by The Cancer Genome Atlas. EBVaGC has several clinicopathological features such as longer survival and higher frequency of lymphoepithelioma-like carcinoma (LELC) and carcinoma with Crohn's disease-like lymphoid reaction that distinguish it from EBV-negative GC. The intensity and pattern of host cellular immune response in GC have been found to significantly correlate with the prognosis of patients with GC, suggesting that immune reaction and tumor microenvironment have critical roles in the progression of GC, and in particular, EBVaGC. Here, we reviewed the cellular and molecular mechanisms underlying prominent immune reactions in patients with EBVaGC. In EBVaGC, deregulation of the expression of immune response-related genes promotes marked intra-or peritumoral immune cell infiltration. The expression of programmed death receptor-ligand 1 is known to be increased in EBVaGC, and therefore, it has been proposed as a favorable prognostic factor for patients with EBVaGC, albeit some data supporting this claim are controversial. Overall, the underlying mechanisms and clinical significance of the host cellular immune response in patients with EBVaGC have not been thoroughly elucidated. Therefore, further research is necessary to better understand the role of tumor microenvironment in EBVaGC.

암줄기세포의 특성 및 면역관문억제 (Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition)

  • 최상훈;김형기
    • 생명과학회지
    • /
    • 제29권4호
    • /
    • pp.499-508
    • /
    • 2019
  • 암줄기세포는 전이와 재발의 주요한 요인이 되는 자가재생능력, 분화할 수 있는 능력, 치료에 대한 저항성 및 암 형성 능력의 특성을 가진다. WNT/${\beta}$-catenin, Hedgehog, Notch, BMI1, BMP 및 TGF-${\beta}$와 같은 암줄기세포의 특성을 획득 및 유지할 수 있는 신호기전의 연구 결과가 존재하지만, 현재까지 선택적으로 암줄기세포를 표적할 수 있는 치료 전략은 미미하다. 최근, 면역관문억제제인 CTLA-4, PD-1/PD-L1 단일클론항체는 흑색종, 폐암, 췌장암 및 혈액암에 괄목할만한 임상 시험 결과를 나타냈으며, 긴 항암지속효과와 적은 부작용은 기존 항암제보다 개선 된 모습을 보였다. 또한 두경부편평상피암, 흑색종, 유방암 줄기세포를 선택적으로 제거 하였다. 위의 결과를 종합하면, 면역관문억제제는 이전 항암제에 비해 효과적인 항암전략이며, 동시에 암줄기세포를 선택적으로 제거할 수 있는 가능성을 시사한다. 따라서 본 리뷰에서는 암줄기세포와 면역관문억제제의 이해를 통해, 면역관문억제제의 암줄기세포 표적 가능성에 대해 고찰하고자 한다.

Correlation of PD-L1 Expression Tested by 22C3 and SP263 in Non-Small Cell Lung Cancer and Its Prognostic Effect on EGFR Mutation-Positive Lung Adenocarcinoma

  • Kim, Taehee;Cha, Yoon Jin;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제83권1호
    • /
    • pp.51-60
    • /
    • 2020
  • Background: Programmed death-ligand 1 (PD-L1) expression is tested by immunohistochemistry (IHC)-22C3, SP263, and SP142. The aim of this study is to evaluate the correlation among the three methods of PD-L1 IHC in non-small cell lung cancer (NSCLC) and clinical significance of PD-L1 expression in lung adenocarcinoma with an epidermal growth factor receptor (EGFR)-tyrosine kinase domain mutation. Methods: The results of 230 patients who were pathologically confirmed as having NSCLC; tested using PD-L1 IHC 22C3, SP263, and SP142 methods; and evaluated via the peptide nucleic acid clamping method to confirm EGFR mutation, were analyzed in this study. Results: 164 patients underwent both the SP263 and 22C3 tests. There was a significant positive correlation between the outcomes of the two tests (Spearman correlation coefficient=0.912, p<0.001), with a derived regression equation as follows: 22C3=15.2+0.884×SP263 (R2=0.792, p<0.001). There was no relationship between the expression of PD-L1 and clinical parameters, including EGFR-tyrosine kinase inhibitor (TKI) mutation. The PD-L1 expression in patients treated with EGFR-TKI yielded a 2-month-shorter progression period than that in the PD-L1-negative group. However, this did not reach statistical significance (PD-L1<1% vs. PD-L1≥1%, 10 months vs. 8 months). Conclusion: The results of the 22C3 and those of SP263 methods were in good correlation with one another. Since the PD-L1 expression is not influenced by the EGFR mutation, it is necessary to perform a PD-L1 test to set the treatment direction in the patients with EGFR-mutant NSCLC.

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)

  • Nam, Sorim;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2019
  • Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.

Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy

  • Cho, Jaewon;Tae, Nara;Ahn, Jae-Hee;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Dae Hee
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.418-426
    • /
    • 2022
  • Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.

전이성 대장암에 대한 면역치료의 최신 지견 (Recent Progress in Immunotherapy for Metastatic Colorectal Cancer)

  • 김성중;이준
    • Journal of Digestive Cancer Research
    • /
    • 제10권2호
    • /
    • pp.65-73
    • /
    • 2022
  • A breakthrough in immunotherapy has changed the outlook for metastatic colorectal cancer (mCRC) treatment as the immune surveillance evasion mechanism of tumor cells has been continuously elucidated. Immune checkpoint inhibitors (ICI), such as pembrolizumab, nivolumab, and ipilimumab, which block immune checkpoint receptors or ligands have been approved for the treatment of mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC based on numerous clinical studies. However, 50% of dMMR/MSI-H mCRC and most mismatch repair proficient/microsatellite stable mCRC remained unresponsive to current immunotherapy. Clinical trials on combination therapy that adds various treatments, such as target agents, chemotherapy, or radiation therapy to ICI, have been actively conducted to overcome this immunotherapy limitation. Further studies on safety and efficacy are needed although several trials presented promising data. Additionally, dMMR/MSI-H, tumor mutation burden, and programmed cell death ligand-1 expression have been studied as biomarkers for predicting the treatment response to immunotherapy, but the discovery and validation of more sensitively predictable biomarkers remained necessary. Thus, this study aimed to review recent studies on immunotherapy in mCRC, summarize the efficacy and limitation of immunotherapy, and describe the biomarkers that predict treatment response.