• Title/Summary/Keyword: Progesterone receptors

Search Result 81, Processing Time 0.03 seconds

Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells

  • Zandieh, Zahra;Amjadi, Fatemehsadat;Vakilian, Haghighat;Aflatoonian, Khashayar;Amirchaghmaghi, Elham;Fazeli, Alireza;Aflatoonian, Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.4
    • /
    • pp.154-162
    • /
    • 2018
  • Objective: The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods: The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results: The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-${\beta}$ estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion: These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OEE6/E7 cell line.

Spatio-temporal Expression and Regulation of Dermatopontin in the Early Pregnant Mouse Uterus

  • Kim, Hyun Sook;Cheon, Yong-Pil
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.262-268
    • /
    • 2006
  • During endometrial differentiation the extracellular matrix (ECM) changes dramatically to prepare for implantation of the embryo. However, the genes regulating the ECM build-up in the uterine endometrium during early pregnancy are not well known. Using the PCR-select cDNA subtraction method, dermatopontin was identified in the uterus of a pregnant mouse on day 4 of gestation. Dermatopontin mRNA increased dramatically on day 3, and was at its highest level at the time of implantation. Administration of RU 486 significantly inhibited mRNA expression by day 4 of gestation, but ICI 182,780 did not. Progesterone markedly induced dermatopontin expression in ovariectomized uteri within 4 h of administration, whereas estrogen had little effect. In silico analysis revealed progesterone receptor binding sites in the dermatopontin promoter region. Decidualization did not induce expression of dermatopontin; instead dermatopontin mRNA became strongly localized at the interimplantation site. In situ hybridization revealed that expression gradually decreased in the luminal epithelial cells as pregnancy progressed, whereas it increased in the stromal cells. The pattern of localization and the changes of intensity of dermatopontin mRNA coincided with those of collagen. Collectively, these results strongly suggest that dermatopontin expression is steroid-dependent. They also suggest that, at the time of implantation, dermatopontin expression is primarily regulated spatio-temporally by progesterone via progesterone receptors, and is modulated by the decidual response during implantation. Dermatopontin may be one of the regulators used to remodel the uterine ECM for pregnancy.

Estrogen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.566-571
    • /
    • 1997
  • To gain further insight into how estrogens modulate cell function, the effects of estrogen on cell proliferation were studied inhuman breast cancer cells. We examined the effects of estrogen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Ten nM estradiol markedly stimulated the proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $1.15{\pm}0.03 pmole/mg protein)$(over that of control. In T47D cells that contained low levels of estrogen receptor $0.23{\pm}0.05 pmole/mg protein)$, Ten nM estrogen slightly stimulated the proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by estrogen. These results showed their sensitivity to growth stimulation by estrogen correlated well with their estrogen receptor content. Also we examined the effect of estrogen on cellular progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. Ten nM estradiol showed maximal stimulation of progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. It is not clear whether these stimulations of progesterone receptor and plasminogen activator activity by estrogen are related to the estrogen stimulation of cell proliferation of MCF-7 cells. Studies with estrogen in human breast cancer cells in culture indicate that sensitivity to growth stimulation by estrogen correlates well with estrogen receptor contents.

  • PDF

Ginsenoside-Rb1 Acts as a Weak Estrogen Receptor Agonist Independent of Ligand Binding.

  • Park, Wan-Kyu;Jungyoon Cho;Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.114-114
    • /
    • 2003
  • Ginseng is a medicinal herb widely used in Asian countries, and its pharmacological effects has been demonstrated in various systems such as cardiovascular, central nervous, and endocrine systems. Its effects are mainly attributed to the ginsenosides. We hypothesize that a component of Panax ginseng, ginsenoside-Rbl, acts by binding to estrogen receptor. We have investigated the estrogenic activity of ginsenoside-Rbl in a transient transfection system using estrogen receptors ${\alpha}$ or ${\beta}$ with estrogen -responsive luciferase plasmids in COS monkey kidney cells. Ginsenoside-Rbl activated both estrogen receptors ${\alpha}$ and ${\beta}$ in a dose-dependent manner (0.5 -100 M ). Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of ginsenoside-Rbl is estrogen receptor dependent. Next, we evaluated the ability of ginsenoside-Rbl to induce estrogen-responsive progesterone receptor gene by semi-quantitative RT-PCR assays. MCF-7 cells treated with l7${\beta}$-estradiol or ginsenoside- Rb1 exhibited an increased expression of progesterone receptor mRNA. However, ginsenoside-Rbl failed to displace the specific binding of [3H]17${\beta}$-estradiol to estrogen receptor in MCF-7 cells as examined by whole cell ligand binding assays, suggesting that there is no direct interaction of ginsenoside-Rbl with estrogen receptor. Our results indicate that estrogen-like activity of ginsenoside-Rbl is independent of direct estrogen receptor association.

  • PDF

In Vitro Effects of Female Sex Hormones on Collagenase Activity of Gingival Fibroblast and Periodontal Ligament Fibroblast (여성 호르몬의 변화가 치은 섬유아세포와 치주인대세포의 교원질 분해 효소의 활성에 미치는 영향)

  • Sin, Ji-Yearn;Lee, Chul-Woo;Han, Soo-Boo
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • Many factors may affect periodontal changes during the physiologic conditions of woman(e.g. puberty, menstrual cycle, pregnancy, menopause). Recently many research has focused on the immunological changes of host, but the exact mechanism is not clear. Collagen is a major constituent of periodontium, and collagenase specifically digests the collagen and plays a role in destruction of periodontal tissue. So, I suppose that it participates with the cytokines in the inflammation of gingiva and vascular response during the changes of female sex hormones. Because there are some evidences of the existence of the receptors of estrogen and progesterone in the gingiva, it may be a target tissue of female sex hormones. In this experiment, gingival fibroblast and periodontal ligament cell were cultured in the presence of various concentrations of estrogen or progesterone corresponding to the menstrual cycle and pregnancy. Collagenase activity of the supernatant of culture media was determined by Spectrophotometric collagenase assay. The enzyme activity was calculated by the % decrease of the coated collagen. 1. The estrogen at both concentrations had no effect on the activity of collagenase of the gingival fibroblast. 2. The progesterone had some effect on the collagenase activity of the gingival fibroblast at low and high concentration of menstrual cycle, and elevated the enzyme activity at all range of pregnancy concentrations. 3. In periodontal ligament cells, estrogen elevated the enzyme activity at the early pregnancy concentration and progesterone elevated at the concentration just before menstruation. In this experiment, pregesterone elevated the collagenase activity of gingival fibroblast and periodontal ligament cells. But the mechanism of the up-regulation of the enzyme activity was not confirmed. The more experiments of direct effect of progesterone on gingival at the molecular level(e.g. northern blot analysis) can reveal the exact mechanism.

  • PDF

Effect of Leptin on the Steroidogenesis of Cultured Human Granulosa Cells (인간 난소의 과립 세포 배양 중 Leptin이 스테로이드 생성에 미치는 영향)

  • Kim, Sei-Kwang;Kim, Myong-Shin;Hwang, Kyung-Joo;Kwon, Hyuck-Chan;Cho, Dong-Jae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • Objective: To elucidate the location of leptin and receptors of ovary specimens obtained from patients undergoing hysterectomy by immunohistochemical staining and to determine the effect of leptin on the steroidogenesis of cultured granulosa cells. Method: In the culturing process of the granulosa cells, FSH (1 IU/ml)and leptin (50 ng/ml), IGF-I (50 ng/ml) was administered to each study group (Group I: FSH; Group II: FSH, leptin; Group III: FSH, IGF-I; Group IV: FSH, IGF-I, leptin), and the levels of estradiol, progesterone, androstenedione in the culture media was measured by radioimmunoassay. Statistical analysis was conducted by one-way ANOVA with Scheffe test. Results: The results showed that leptin and leptin receptors were both found to be strongly stained in granulosa and theca cells, and also in some interstitial cells. Leptin receptors were also observed in cultured granulosa cells. While there was no statistically significant difference in the androstnedione concentrations between the groups, estradiol concentrations was significantly decreased in Group IV ($2202.0{\pm}151.14$ pg/ml) compared to Group III ($2859.0{\pm}122.6$ pg/ml), and progesterone concentrations were also significantly decreased in Group II($4696.3{\pm}190.6$ ng/ml) and Group IV ($4517{\pm}206.78$ ng/ml) compared to Group III($5546.0{\pm}179.5$ ng/ml). Conclustion: The study result of this study suggest that leptin is directly involved in the regulation of ovarian functions, in particular steroidogenesis.

  • PDF

Pituitary and Gonadal Response to GnRH in Prepubertal Buffaloes (Bubalus bubalis)

  • Singh, C.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.78-83
    • /
    • 1998
  • The objective of this study was to investigate the responsiveness of hypophysis and gonads to synthetic GnRH among prepubertal buffalo heifers at 12 months of age. Peripheral plasma FSH, LH, estradiol and progesterone level were measured in blood samples collected at 1 hr before and up to 18 days subsequent to the administration of $200{\mu}g$ GnRH (n=6) or saline (n=6) in Murrah buffalo heifers. The pretreatment peripheral plasma FSH, LH, estradiol and progesterone among GnRH treated heifers were $7.35{\pm}0.45ng/ml$, $1.08{\pm}0.3ng/ml$, $22.93{\pm}1.06pg/ml$ and $0.27{\pm}0.04ng/ml$ respectively. A quick elevation (p < 0.01) of FSH and LH within five min of GnRH administration was observed in all geifers. Although the peak FSH $(89.57{\pm}23.43ng/ml)$ and LH $(7.52{\pm}3.08ng/ml)$ reached by 10 min of GnRH administration, yet the animals differed both in terms of their amplitude response of FSH and LH release as well as in terms of time which animals took to exhiit maximum response to GnRH administration. The GnRH administration did not cause alteration in plasma estradiol and progesterone level. The present study suggests that the pituitary of 12 month buffalo heifers has capacity to synthesize and store of gonadotropin and have developed receptors for GnRH for a spike of gonadotropin release.

Effects of PGF2 α and GnRH during Different Ovarian Status at Onset of Puberty in Murrah Buffalo Heifers (Bubalus bubalis)

  • Singh, c.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1059-1062
    • /
    • 2000
  • The objective of the investigation was to study the effect of intramuscular $PGF_2\;{\alpha}$ and GnRH on estrus behavior and ovarian response in Murrah buffalo heifers. Twelve Murrah buffalo heifers at 32 months of age that had not exhibited behavioral estrus symptom were included in the experiment. Out of 12,4 heifers were in follicular phase (plasma estradiol $57.05{\pm}12.52pg/ml$), another 4 heifers were in luteal phase (Plasma progesterone $2.24{\pm}0.25ng/ml$) while the ovaries of remaining four heifers were inactive (estradiol $23.70{\pm}1.66pg/ml$and progesterone $0.32{\pm}0.06ng/ml$). $PGF_2\;{\alpha}$ (25 mg, Lutalyse, im) and GnRH (200 ug, Fertagyl, iv) was administered to each heifer at interval of 10 days. The plasma progesterone concentration decreased within 48 hrs after $PGF_2\;{\alpha}$ injection and followed thereafter with follicular growth, estrus and ovulation. GnRH administration induced follicular growth, elevation of plasma estradiol concentration with subsequent exhibition of behavioral estrus in 2 out of 4 heifers having inactive ovary. The observation reveals that Murrah buffalo heifers at 32 months of age have developed receptors for $PGF_2\;{\alpha}$ and GnRH on ovarian and pituitary tissue respectively and response the single injection of $PGF_2\;{\alpha}$ and GnRH similar to the mature cycling animals.

Rapidly growing giant pilomatricoma in the right parotid region of a pregnant woman

  • Koh, In Suk;Cho, Hwa Jin;Kim, Jin Woo
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.3
    • /
    • pp.176-179
    • /
    • 2020
  • Pilomatricoma is a benign tumor arising from the primitive basal cells of the epidermis that differentiate into hair matrix cells. Mutations in the CTNNB1 gene, which encodes β-catenin (a protein involved in hair growth), play an etiological role in the development of pilomatricoma. A 34-year-old woman presenting with a mass in the right parotid region underwent an excisional biopsy. The mass was conclusively diagnosed as pilomatricoma. During pregnancy, the mass grew from 1 cm to 5 cm in diameter and was accompanied by pain and tenderness. The growth may have been facilitated by the increased production of estrogen and progesterone, which bind to receptors located in the outer root sheath cells of the hair follicles. No recurrence was observed during 6 months of follow-up.

Studies on the Concentrations of Receptors for Ovarian Steroids, Prostaglandins and cAMP in Uterine Tissue during the Period of Implantation in Rats (흰쥐 착상시기에 자궁내 난소 홀몬 수용체와 Prostaglandin 및 cAMP 농도변화에 관한 연구)

  • Yoon, M.;Ryu, K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.14 no.1
    • /
    • pp.43-49
    • /
    • 1987
  • In the present study, hormonal changes in uterine tissue and circulation were evaluated during the implantation period in rats in order to understand the mechanism by which implantation takes place. The results obtained were as follows. 1. Concentrations of serum estradiol and progesterone were significantly increased on days 4 and 5. 2. Concentration of estrogen receptor reached maximum on day 5 when implantation normally occurred in rats. On the other hand, progesterone receptor was gradually decreased, reaching the lowest on day 5. 3. Uterine PGs and cAMP concentrations were significantly increased on day 5. 4. Uterine PGs and cAMP concentrations in implant sites were significantly greater than those in non-implant sites. It is, therefore, concluded that prostaglandins and cAMP in uterine tissue as well as circulating ovarian steroid hormones were increased during the period of implantation, suggesting that these hormones might be actively involved in the process of implantation in rats.

  • PDF