• 제목/요약/키워드: Profiling performance model

검색결과 23건 처리시간 0.021초

대형 윈도우에서 다중 분기 예측법을 이용하는 수퍼스칼라 프로세서의 프로화일링 성능 모델 (A Wide-Window Superscalar Microprocessor Profiling Performance Model Using Multiple Branch Prediction)

  • 이종복
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1443-1449
    • /
    • 2009
  • This paper presents a profiling model of a wide-window superscalar microprocessor using multiple branch prediction. The key idea is to apply statistical profiling technique to the superscalar microprocessor with a wide instruction window and a multiple branch predictor. The statistical profiling data are used to obtain a synthetical instruction trace, and the consecutive multiple branch prediction rates are utilized for running trace-driven simulation on the synthesized instruction trace. We describe our design and evaluate it with the SPEC 2000 integer benchmarks. Our performance model can achieve accuracy of 8.5 % on the average.

효과적인 딥러닝 기반 비프로파일링 부채널 분석 모델 설계방안 (Design of an Effective Deep Learning-Based Non-Profiling Side-Channel Analysis Model)

  • 한재승;심보연;임한섭;김주환;한동국
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1291-1300
    • /
    • 2020
  • 최근 딥러닝 기반 비프로파일링 부채널 분석이 제안됐다. 딥러닝 기반 비프로파일링 분석은 신경망 모델을 모든 추측키에 대해 학습시킨 뒤, 학습된 정도의 차이를 통해 올바른 비밀키를 찾아내는 기법이다. 이때, 신경망 학습모델 설계에 따라 비프로파일링 분석성능이 크게 달라지기 때문에 올바른 모델 설계의 기준이 필요하다. 본 논문은 학습모델 설계에 사용 가능한 2가지 loss 함수와 8가지 label 기법을 설명하고, 비프로파일링 분석과 소비전력모델 관점에서 각 label 기법의 분석성능을 예측했다. 해밍웨이트 소비전력모델을 가정했을 때의 비프로파일링 분석 특징을 고려해서 One-hot 인코딩을 적용하지 않은 HW(Hamming Weight) label과 CO(Correlation Optimization) loss를 적용한 학습모델이 가장 좋은 분석성능을 가질 것으로 예측했다. 그리고 AES-128 1라운드 Subbytes 연산 부분 데이터 집합 3가지에 대해 실제 분석을 수행했다. 제시한 각 label 기법과 loss 함수를 적용한 총 16가지 MLP(Multi-Layer Perceptron)기반 학습모델로 두 데이터 집합을 비프로파일링 분석하여 예측에 대해 검증했다.

임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가 (Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms)

  • 이민하;이성재;김태현
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.

영양성분 프로파일링 기반 사료추천 알고리듬 (Nutrient Profiling-based Pet Food Recommendation Algorithm)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제25권4호
    • /
    • pp.145-156
    • /
    • 2018
  • This study proposes a content-based recommendation algorithm (NRA) for pet food. The proposed algorithm tries to recommend appropriate or inappropriate feed by using collective intelligence based on user experience and prior knowledge of experts. Based on the physical and health status of the dogs, this study suggests what kind of nutrients are necessary for the dogs and the most recommended pet food containing these nutrients. Performance evaluation was performed in terms of recall, precision, F1 and AUC. As a result of the performance evaluation, the AUC and F1 value of the proposed NRA was 15% and 42% higher than that of the baseline model, respectively. In addition, the performance of NRA is shown higher for recommendation of normal dogs than disease dogs.

Comparison and optimization of deep learning-based radiosensitivity prediction models using gene expression profiling in National Cancer Institute-60 cancer cell line

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3027-3033
    • /
    • 2022
  • Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.

질의어의 근접성 정보 및 그래프 프로파일링 기법을 이용한 태그 기반 개인화 검색 (Exploiting Query Proximity and Graph Profiling Method for Tag-based Personalized Search in Folksonomy)

  • 한기준;장진철;이문용
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1117-1125
    • /
    • 2014
  • 최근 폭소노미라고 불리는 데이터들이 사용자의 의도 파악 및 흥미를 분석하는 데에 매우 유용하게 쓰이고 있다. 본 논문은 폭소노미 데이터를 이용한 개인화 검색에서, 기존의 벡터 기반 프로파일링 및 유사도 계산 모델의 한계점을 지적하고, 이러한 한계를 극복하기 위한 방법으로 그래프 기반의 프로파일링 및 유사도 계산법을 제안한다. 최종적으로 그래프 기반의 개인화 검색 모델에 추가적으로 질의어간의 근접성까지 고려한 보다 발전된 개인화 검색 기법을 제안하였다. 본 연구에서는 복수의 데이터셋을 사용한 객관적인 성능 평가 실험을 통해 제안한 모델이 기존의 벡터 스페이스 모델에 기반한 프로파일링 기법 및 프로파일 간의 유사도 계산 기법보다 더 뛰어난 개인화 검색 결과를 제공함을 확인하였다. 또한 추가적인 파라미터 실험을 통하여, 제안하는 모델은 어떠한 형태의 데이터셋에도 쉽게 적용가능함을 보였다.

Profiling Green IT Leaders Quantitatively and Qualitatively

  • Kim, Yong Seog;Kwag, Seung Woog
    • Industrial Engineering and Management Systems
    • /
    • 제12권2호
    • /
    • pp.118-129
    • /
    • 2013
  • In this study, we intend to identify key financial variables that can accurately classify Green IT leaders against Green IT followers. In particular, we build and compare single and meta-classifiers to identify the relationship between environmental performance and financial performance, while focusing on selecting and interpreting a final prediction model with a smaller set of financial performance indicators. Our experimental results demonstrate that several key variables representing the size, financial resources, operational efficiency, and risk-taking tendency of an organization can successfully identify Green IT leaders with approximately 90% of accuracy. In addition, we find that Green IT leaders show a higher utilization rate of Web pages as a green marketing channel than Green IT followers while they share common layouts of Web publication to build green IT brands with some differences.

DEA와 AHP를 이용한 대학의 성과 평가 (The Performance Evaluation of Universities using DEA and AHP Model)

  • 한유정;한창희
    • 산업경영시스템학회지
    • /
    • 제37권3호
    • /
    • pp.51-63
    • /
    • 2014
  • Because of the changing educational environments, Korean universities have to stand up to the challenge of enhancing their performances in educational activities. Therefore, Korean universities should seek ways to improve its competitiveness. The evaluation of Korean universities has been conducted by the Government and other media agencies like JoongAng's Daily to promote the development of universities. The purpose of this study is to evaluate and compare the relative efficiency of Korean universities using DEA (Data Envelopment Analysis) and AHP (Analytic Hierarchy Process) models. To produce reasonable results, major input and output variables have been determined in a step using a Profiling method, Spearman correlation analysis and AHP model. Also, this study shows that the relative efficiency for Korean universities is obtained not only based on quantity of output, but also on the basis of the quality of the output. Drawing upon the results of the analysis, this study provides a comprehensive and practical method for evaluating the performance of universities in terms of efficiency.

Target Market Determination for Information Distribution and Student Recruitment Using an Extended RFM Model with Spatial Analysis

  • ERNAWATI, ERNAWATI;BAHARIN, Safiza Suhana Kamal;KASMIN, Fauziah
    • 유통과학연구
    • /
    • 제20권6호
    • /
    • pp.1-10
    • /
    • 2022
  • Purpose: This research proposes a new modified Recency-Frequency-Monetary (RFM) model by extending the model with spatial analysis for supporting decision-makers in discovering the promotional target market. Research design, data and methodology: This quantitative research utilizes data-mining techniques and the RFM model to cluster a university's provider schools. The RFM model was modified by adapting its variables to the university's marketing context and adding a district's potential (D) variable based on heatmap analysis using Geographic Information System (GIS) and K-means clustering. The K-prototype algorithm and the Elbow method were applied to find provider school clusters using the proposed RFM-D model. After profiling the clusters, the target segment was assigned. The model was validated using empirical data from an Indonesian university, and its performance was compared to the Customer Lifetime Value (CLV)-based RFM utilizing accuracy, precision, recall, and F1-score metrics. Results: This research identified five clusters. The target segment was chosen from the highest-value and high-value clusters that comprised 17.80% of provider schools but can contribute 75.77% of students. Conclusions: The proposed model recommended more targeted schools in higher-potential districts and predicted the target segment with 0.99 accuracies, outperforming the CLV-based model. The empirical findings help university management determine the promotion location and allocate resources for promotional information distribution and student recruitment.

위계적 질환군 위험조정모델 기반 의료비용 예측 (Prediction of Health Care Cost Using the Hierarchical Condition Category Risk Adjustment Model)

  • 한기명;유미경;전기홍
    • 보건행정학회지
    • /
    • 제27권2호
    • /
    • pp.149-156
    • /
    • 2017
  • Background: This study was conducted to evaluate the performance of the Hierarchical Condition Category (HCC) model, identify potentially high-cost patients, and examine the effects of adding prior utilization to the risk model using Korean claims data. Methods: We incorporated 2 years of data from the National Health Insurance Services-National Sample Cohort. Five risk models were used to predict health expenditures: model 1 (age/sex groups), model 2 (the Center for Medicare and Medicaid Services-HCC with age/sex groups), model 3 (selected 54 HCCs with age/sex groups), model 4 (bed-days of care plus model 3), and model 5 (medication-days plus model 3). We evaluated model performance using $R^2$ at individual level, predictive positive value (PPV) of the top 5% of high-cost patients, and predictive ratio (PR) within subgroups. Results: The suitability of the model, including prior use, bed-days, and medication-days, was better than other models. $R^2$ values were 8%, 39%, 37%, 43%, and 57% with model 1, 2, 3, 4, and 5, respectively. After being removed the extreme values, the corresponding $R^2$ values were slightly improved in all models. PPVs were 16.4%, 25.2%, 25.1%, 33.8%, and 53.8%. Total expenditure was underpredicted for the highest expenditure group and overpredicted for the four other groups. PR had a tendency to decrease from younger group to older group in both female and male. Conclusion: The risk adjustment models are important in plan payment, reimbursement, profiling, and research. Combined prior use and diagnostic data are more powerful to predict health costs and to identify high-cost patients.