• Title/Summary/Keyword: Profiling analysis

Search Result 749, Processing Time 0.028 seconds

Analysis and role of oligosaccharides in milk

  • Ruhaak, L. Renee;Lebrilla, Carlito B.
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.442-451
    • /
    • 2012
  • Milk is an important fluid in glycobiology because it contains a number of short carbohydrate chains either free or as glycoconjugates. These compounds as a class are the most abundant component and benefit the infant by developing and maintaining the infant's gut flora. New and emerging methods for oligosaccharide analysis have been developed to study milk. These methods allow for the rapid profiling of oligosaccharide mixtures with quantitation. With these tools, the role of oligosaccharide in milk is being understood. They further point to how oligosaccharide analysis can be performed, which until now has been very difficult and have lagged significantly those of other biopolymers.

Gene Expression Analysis of Acetaminophen-induced Liver Toxicity in Rat (아세트아미노펜에 의해 간손상이 유발된 랫드의 유전자 발현 분석)

  • Chung, Hee-Kyoung
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.323-328
    • /
    • 2006
  • Global gene expression profile was analyzed by microarray analysis of rat liver RNA after acute acetaminophen (APAP) administration. A single dose of 1g/kg body weight of APAP was given orally, and the liver samples were obtained after 24, 48 h, and 2 weeks. Histopathologic and biochemical studies enabled the classification of the APAP effect into injury (24 and 48 h) and regeneration (2 weeks) stages. The expression levels of 4900 clones on a custom rat gene microarray were analyzed and 484 clones were differentially expressed with more than a 1.625-fold difference(which equals 0.7 in log2 scale) at one or more time points. Two hundred ninety seven clones were classified as injury-specific clones, while 149 clones as regeneration-specific ones. Characteristic gene expression profiles could be associated with APAP-induced gene expression changes in lipid metabolism, stress response, and protein metabolism. We established a global gene expression profile utilizing microarray analysis in rat liver upon acute APAP administration with a full chronological profile that not only covers injury stage but also later point of regeneration stage.

Microbial Diversity Information Facility: Bacteriology Insight Orienting System (BIOS)

  • Shimura, Junko;Shimiz, Hideyukiu;Tsuruwaka, Keiji;Moritani, Yukimitsu;Miyazaki, Kenji;Tsugita, Akira;Watanabe, Makoto M.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.135-141
    • /
    • 2000
  • Global Biodiversity is common interest of humans for better health and sustainable development of the society. To provide access and analysis on microbial diversity information, Bacteriology Insight Orienting System (BIOS) has been developed. BIOS contains 6402 species and subspecies names of bacteria and archaea, 2606 names of cyanobacteria by March 2000. BIOS of which web based analytical tool provides windows to compare the results of phylogenetic analysis based on 16S rDNA sequence and the results of cluster analysis on proteome profiling. The sequence data and 2 dimensional gel electrophoresis analysis data were accumulated in BIOS database content for cyanobacteria reclassification and taxonomy. (BIOS URL: http.://www-sp2000ao.nies.go.jp/bios/index.html).

  • PDF

Investigation of Nanostructures in Homopolymer and Copolymer Films by Surface Techniques

  • Kang, Minhwa;Lee, Jihye;Lee, Yeonhee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.276-276
    • /
    • 2013
  • Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Atomic Force Microscopy (AFM) are the useful instruments to measure nanostructures of material surfaces. Surface pattern formation in blending homopolymer and diblock copolymer films was investigated as a function of film thickness and annealing conditions. In this study, surface structures of blending homopolymer [deuterated polystyrene (Mn 20,000), poly (methyl methacrylate) (Mn 18,000)] and diblock copolymer [Poly (deuteratedstyrene(d8)-b-methyl methacrylate) (Mn 19,500-18,100)] films were observed. The AFM result indicated that the nanostructures and film thickness depended on temperature, concentration and solvent. TOF-SIMS depth profiling was obtained for the lamellar morphology of symmetric dPS-b-PMMA which is found to orient parallel to the surface of the substrate. Elemental and molecular depth profiles measured in the negative ion mode by a Cs+ primary ion beam demonstrate variations in hydrogen, deuterium, carbon, oxygen, hydrocarbons and deuterated hydrocarbons within the diblock copolymer according to the depth.

  • PDF

Profiling Female College Students' Apparel Buying Decision-Making Styles (여대생들의 의류구매 의사결정 스타일 특성에 관한 연구)

  • 정혜영
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.3
    • /
    • pp.468-484
    • /
    • 2004
  • The purposes of this study were (1) to segment female college students' apparel shoppers into unique apparel buying decision-making style groups; and (2) to profile for each segment in terms of personal characteristics (material values, change seeking tendency and prestige sensitivity) and fashion information sources. Data were collected through questionnaires from convenient sample of 290 female college students. As a result of cluster analysis and univariate analysis of variance, distinctive consumer decision-making style groups of consumers were identified; Value-maximizing Recreational Shoppers, Brand-Maximizing Emotional Shoppers, and Apathetic Shoppers. These three groups were compared as to the effect of personal characteristics variables and fashion information sources through univariate analysis of variance and chi-square statistics. The result showed that personal characteristics (material values, change seeking tendency and prestige sensitivity) and fashion-information sources do influence the consumer decision-making styles and that these three groups were unique in their decision-making characteristics showing that consumer decision-making styles can be a good segmentation base for apparel market.

  • PDF

Metabolomic Response of Chlamydomonas reinhardtii to the Inhibition of Target of Rapamycin (TOR) by Rapamycin

  • Lee, Do Yup;Fiehn, Oliver
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.923-931
    • /
    • 2013
  • Rapamycin, known as an inhibitor of Target of Rapamycin (TOR), is an immunosuppressant drug used to prevent rejection in organ transplantation. Despite the close association of the TOR signaling cascade with various scopes of metabolism, it has not yet been thoroughly investigated at the metabolome level. In our current study, we applied mass spectrometric analysis for profiling primary metabolism in order to capture the responsive dynamics of the Chlamydomonas metabolome to the inhibition of TOR by rapamycin. Accordingly, we identified the impact of the rapamycin treatment at the level of metabolomic phenotypes that were clearly distinguished by multivariate statistical analysis. Pathway analysis pinpointed that inactivation of the TCA cycle was accompanied by the inhibition of cellular growth. Relative to the constant suppression of the TCA cycle, most amino acids were significantly increased in a time-dependent manner by longer exposure to rapamycin treatment, after an initial down-regulation at the early stage of exposure. Finally, we explored the isolation of the responsive metabolic factors into the rapamycin treatment and the culture duration, respectively.

High-resolution 1H NMR Spectroscopy of Green and Black Teas

  • Jeong, Ji-Ho;Jang, Hyun-Jun;Kim, Yongae
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.78-84
    • /
    • 2019
  • High-resolution $^1H$ NMR spectroscopic technique has been widely used as one of the most powerful analytical tools in food chemistry as well as to define molecular structure. The $^1H$ NMR spectra-based metabolomics has focused on classification and chemometric analysis of complex mixtures. The principal component analysis (PCA), an unsupervised clustering method and used to reduce the dimensionality of multivariate data, facilitates direct peak quantitation and pattern recognition. Using a combination of these techniques, the various green teas and black teas brewed were investigated via metabolite profiling. These teas were characterized based on the leaf size and country of cultivation, respectively.

Metabolite Profiling of Serum from Patients with Tuberculosis

  • Park, Hee-Bin;Yoo, Min-Gyu;Choi, Sangho;Kim, Seong-Han;Chu, Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.264-268
    • /
    • 2021
  • Tuberculosis (TB) is a major infectious disease that threatens the life and health of people globally. Here, we performed a metabolomic analysis of serum samples from patients with intractable TB to identify biomarkers that might shorten the TB treatment period. Serum samples collected at the commencement of patients' treatment and healthy controls were analyzed using the capillary electrophoresis and time-of-flight mass spectrometry metabolome analysis method. The analysis identified the metabolites cystine, kynurenine, glyceric acid, and cystathionine, which might be useful markers for monitoring the TB treatment course. Furthermore, our research may provide experimental data to develop potential biomarkers in the TB treatment course.

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.

Metabolomic analysis of healthy human urine following administration of glimepiride using a liquid chromatography-tandem mass spectrometry

  • Do, Eun Young;Gwon, Mi-Ri;Kim, Bo Kyung;Ohk, Boram;Lee, Hae Won;Kang, Woo Youl;Seong, Sook Jin;Kim, Hyun-Ju;Yoon, Young-Ran
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Glimepiride, a third generation sulfonylurea, is an antihyperglycemic agent widely used to treat type 2 diabetes mellitus. In this study, an untargeted urinary metabolomic analysis was performed to identify endogenous metabolites affected by glimepiride administration. Urine samples of twelve healthy male volunteers were collected before and after administration of 2 mg glimepiride. These samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then subjected to multivariate data analysis including principal component analysis and orthogonal partial least squares discriminant analysis. Through this metabolomic profiling, we identified several endogenous metabolites such as adenosine 3', 5'-cyclic monophosphate (cAMP), quercetin, tyramine, and urocanic acid, which exhibit significant metabolomic changes between pre- and posturine samples. Among these, cAMP, which is known to be related to insulin secretion, was the most significantly altered metabolite following glimepiride administration. In addition, the pathway analysis showed that purine, tyrosine, and histidine metabolism was affected by pharmacological responses to glimepiride. Together, the results suggest that the pharmacometabolomic approach, based on LC-MS/MS, is useful in understanding the alterations in biochemical pathways associated with glimepiride action.