• Title/Summary/Keyword: Profiled Steel-beams

Search Result 15, Processing Time 0.024 seconds

Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate (트러스 데크를 사용한 강판성형 합성보의 휨성능 평가)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jung, Sang Min;Kang, Suk Kuy
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2007
  • Slimfloor composite-beam systems could considerably reduce the story height of a building if the steel beam would be installed deep into the concrete floor slab. However, as the depth of the steel beam's installation is limited, it cannot cope with the various demands of building systems. To address this problem, a profiled steel beam section that can control the depth of the steel beam's and slabs' installation was developed in this study. Presented herein are the results of an experiment that was conducted focusing on the flexural behavior of the partially connected composite beams with profiled steel beams encased in composite concrete slabs. Five full-scale specimens with different slab types, with or without shear connection and reinforcement bars, were constructed and tested in this study. As a result, the shear bond stress without an additional shear connection was found to be $0.20{\sim}0.76N/mm^2$due to the inherent mechanical and chemical bond stress.

A Study on the Structural Behavior of Profiled Composite Beams (박판 냉간성형강 합성보의 구조적 거동에 관한 연구)

  • Yang, Gu Rok;Hwang, Young Seo;Song, Jun Yeup;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.143-151
    • /
    • 1999
  • An analytical study on the behavior of composite beams, which are composed of cold-formed profiled steel sheeting and normal strength concrete, is described. An analytical method to trace the nonlinear behavior of a composite beam is developed to include the nonlinear material properties of steel sheeting, reinforcing steel bar and concrete. A simple Power Model has also been proposed for the nonlinear moment-curvature relation of the composite beam. The model, which has been originally used to predict the flexural capacity of the beam to column connections, is adapted to the composite beams. The load-deflection behavior of the beams has been simulated by the step-by-step numerical integration using the moment-curvature relation obtained by the Power Model. The results have been compared with test results.

  • PDF

Experimental study on infilled frames strengthened by profiled steel sheet bracing

  • Cao, Pingzhou;Feng, Ningning;Wu, Kai
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.777-790
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of reinforced concrete (RC) frames strengthened by profiled steel sheet bracing which takes the influence of infill walls into consideration. One-bay, two-story, 1/3 scale two specimens shared same feature of dimensions, one specimen consists only beams and columns; the other one is reinforced by profiled steel sheet bracing with infill walls. Hysteretic curves, envelope curves, stiffness degradation curves and energy dissipation capacities are presented based on test data. Test results indicate that the ultimate load of strengthened specimen has been improved by 225%. The stiffness of reinforced by profiled steel sheet bracing has been increased by 108%. This demonstrates that infill walls and profiled steel sheet bracing enhanced the strength and stiffness distinctly. Energy dissipation has an obvious increase after 12 cycles. This shows that the reinforced specimen is able to bear the lateral load effectively and absorb lots of seismic energy.

Flexural Capacity of the Profiled Steel Composite Beams -Deep Deck Plate- (강판성형 합성보의 휨성능 평가 -춤이 깊은 합성데크-)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jeong, Sang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.247-258
    • /
    • 2007
  • This paper describes the results of an experimental study on the new type of encased composite beams that use deep deck plates, which could reduce the story height of buildings by controlling the bottom flange of steel beams. The profiled steel beam was thus developed. It was advantageous to the long span of the buildings. Seven full-scale specimens were constructed, and simply supported bending tests were conducted on the encased composite beams with different steel plate thicknesses, with and without shear studs, reinforcing bars, and web openings. The test results showed that the encased composite beams that were developed in this study had sufficient composite action without additional shear connectors due to their inherent shear-bond effects between the steel beams and concrete.

Review of stud shear resistance prediction in steel-concrete composite beams

  • Bonilla, Jorge;Bezerra, Luciano M.;Mirambell, Enrique;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.355-370
    • /
    • 2018
  • In steel-concrete composite beams, longitudinal shear forces are transferred across steel flange-concrete slab interface by means of shear connectors. The connector behavior is highly non-linear and involves several complex mechanisms. The design resistance and stiffness of composite beams depends on the shear connection behavior and the accuracy in the connector resistance prediction is essential. However determining the stud shear resistance is not an easy process: analytical methods do not give an adequate response to this problem and it is therefore necessary to use experimental methods. This paper present a summary of the main procedures to predict the resistance of the stud shear connectors embedded in solid slab, and stud shear connectors in composite slab using profiled steel sheeting with rib perpendicular to steel beam. A large number of experimental studies on the behavior of stud shear connectors and reported in the literature are also summarized. A comparison of the stud shear resistance prediction using six reference codes (AISC, AASHTO, Eurocode-4, GB50017, JSCE and AS2327.1) and other procedures reported in the literature against experimental results is presented. From this exercise, it is concluded that there are still inaccuracies in the prediction of stud shear resistance in all analysed procedures and that improvements are needed.

An Experimental Study on Flexural Strength of Modular Composite profiled Beams (휨 보강된 모듈단면 합성 프로파일보의 휨 내력에 관한 실험적 연구)

  • Ahn, Hyung Joon;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2007
  • This paper presents a study that attempted to improve the site applicability of profile sheets and check the effects of bending reinforcement in composite profiled beams, and consequently, to suggest an improved modular-type CB2 and two types of bending reinforcement methods. As a result of the reinforcing and reforming modular profiled beam experiment conducted, CBIIshowed an adequate deformation capacity as well as a sufficient plastic plateau at the maximum load and thereafter. For all the specimens, an insignificant modular slip occurred while linear relations were kept constant, at up to approximately 50% of the maximum load and at constant linear relations. The experimental values were very low. Probably, due to the small-scale experiment, the area of the concrete for the concrete filling and covering might have been insufficient, which might have led to the failure to improve the strength. Comparing the results with the standard design stress, all the specimens-except for T16 and B16-indicated more than 0.9. Based on the standard design stress, the reinforced modular profiled beam was consideredto have positive applicability.

Study on behavior of T-section modular composite profiled beams

  • Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.457-473
    • /
    • 2010
  • In this study, specimens were made with profile thicknesses and shear reinforcement as parameters. The bending and shear behavior were checked, and comparative analysis was conducted of the results and the theoretical values in order to see the applicability of T-section Modular Composite Profiled Beams (TMPB). In TMPB, the profiles of formwork functions play a structural role resisting the load. Also, the module concept, which is introduced into TMPB, has advantages: it can be mass-produced in a factory, it is lighter than an existing H-beam, it can be fabricated on the spot, and its section size is freely adjustable. The T1 specimens exhibited ductile behavior, where the whole section displayed strain corresponding to yielding strain at least without separation between modules. They also exhibited maximum strength similar to the theoretical values even if shear reinforcement was not applied, due to the marginal difference between shear strength and maximum bending monment of the concrete section. A slip between modules was incurred by shear failure of the bolts in all specimens, excluding the T1 specimen, and therefore bending moment could not be fully displayed.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

Numerical studies on shear connectors in push-out tests under elevated temperatures

  • Wang, Aaron J.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.317-338
    • /
    • 2011
  • Three-dimensional thermal and mechanical coupled finite element models are proposed to study the structural behaviours of shear connectors under fire. Concrete slabs, steel beams and shear connectors are modelled with eight-noded solid elements, and profiled steel deckings are modelled with eight-noded shell elements. Thermal, mechanical and geometrical nonlinearities are incorporated into the models. With the proper incorporation of thermal and mechanical contacts among steel beams, shear connectors, steel deckings and concrete slabs, both of the models are verified to be accurate after the validation against a series of push-out tests in the room temperature or under the standard fire. Various thermal and mechanical responses are also extracted and observed in details from the results of the numerical analyses, which gives a better understanding of the structural behavior of shear connectors under elevated temperatures.

Finite element model for the long-term behaviour of composite steel-concrete push tests

  • Mirza, O.;Uy, B.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.45-67
    • /
    • 2010
  • Composite steel-concrete structures are employed extensively in modern high rise buildings and bridges. This concept has achieved wide spread acceptance because it guarantees economic benefits attributable to reduced construction time and large improvements in stiffness. Even though the combination of steel and concrete enhances the strength and stiffness of composite beams, the time-dependent behaviour of concrete may weaken the strength of the shear connection. When the concrete loses its strength, it will transfer its stresses to the structural steel through the shear studs. This behaviour will reduce the strength of the composite member. This paper presents the development of an accurate finite element model using ABAQUS to study the behaviour of shear connectors in push tests incorporating the time-dependent behaviour of concrete. The structure is modelled using three-dimensional solid elements for the structural steel beam, shear connectors, concrete slab and profiled steel sheeting. Adequate care is taken in the modelling of the concrete behaviour when creep is taken into account owing to the change in the elastic modulus with respect to time. The finite element analyses indicated that the slip ductility, the strength and the stiffness of the composite member were all reduced with respect to time. The results of this paper will prove useful in the modelling of the overall composite beam behaviour. Further experiments to validate the models presented herein will be conducted and reported at a later stage.