• Title/Summary/Keyword: Profile Drawing Experiment

Search Result 4, Processing Time 0.022 seconds

Process Design Program for Multistage Profile Drawing from Round Material (원형소재 다단 형상인발 공정설계 프로그램)

  • Kim, Sung-Min;Lee, Sang-Kon;Lee, Tae-Kyu;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.377-382
    • /
    • 2011
  • Up to now, process design of multistage profile drawing from initial round material is performed through trial-and-error based on experience of industrial experts. This means the increase in production cost and excessive time consuming. In this study, process design program was developed for multistage profile drawing from initial round material. The program was made using VisualLISP. Therefore, the program can be operated by AutoCAD program. In order to verify the effectiveness of the program, two stage profile drawing process for producing heavy duty guide rail was design by using the program. In addition FE analysis and profile drawing experiment were performed. As a result, the program can be used in order to design profile drawing process design.

Optimal Die Profile Design in Tube Drawing Process for Prevention of Material Fracture (파단방지를 위한 튜브인발공정 최적 금형형상 설계에 관한 연구)

  • Lee, Sang-Kon;Kim, Sang-Woo;Lee, Young-Seon;Lee, Jung-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.78-84
    • /
    • 2006
  • The objective of this study is to design the optimal die profile that can prevent material fracture in the tube drawing process for automobile steering input shaft. First, the CDV(Critical Damage Value) of material is obtained by the compression test and FE-analysis. The occurrence of fracture is estimated by the FE-analysis considering the CDV. In order to achieve the objective of this study, optimization technique and FE-analysis are applied. FPS(Flexible Polyhedron Search) method, which is one of the non-gradient optimization techniques often used in engineering, is used to search optimal die profile. The drawing die profile is represented by Bezier-curve to generate all the possible die profile. Using FPS method and FE-analysis the optimal drawing die profile is determined. To verify tile effectiveness of the redesigned optimal die, the tube drawing experiment is performed. In the experimental result, it is possible to produce sound product without material fracture using the redesigned optimal die.

Trimming Line Design of Auto-body Panel with Complex Shape Using Finite Element Inverse Method (유한요소 역해석을 이용한 복잡한 자동차 판넬의 트리밍 라인 설계)

  • Song, Y.J.;Hahn, Y.H.;Park, C.D.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.459-466
    • /
    • 2006
  • Trimming line design plays an important role in obtaining accurate edge profile after flanging. Compared to the traditional section-based method, simulation-based method can produce more accurate trimming line by considering deformation mechanics. Recently, the use of a finite element inverse method is proposed to obtain optimal trimming line. By analyzing flanging inversely from the final mesh after flanging, trimming line can be obtained from initial mesh on the drawing die surface. Initial guess generation fer finite element inverse method is obtained by developing the final mesh onto drawing tool mesh. Incremental development method is adopted to handle irregular mesh with various size and undercut. In this study, improved incremental development algorithm to handle complex shape is suggested. When developing the final mesh layer by layer, the algorithm which can define the development sequence and the position of developing nodes is thoroughly described. Flanging of front fender is analyzed to demonstrate the effectiveness of the present method. By using section-based trimming line and simulation-based trimming line, incremental finite element simulations are carried out. In comparison with experiment, it is clearly shown that the present method yields more accurate edge profile than section-based method.

A Study on the Application of River Surveying by Airborne LiDAR (항공라이다의 하천측량 적용 방안 연구)

  • Choi, Byoung Gil;Na, Young Woo;Choo, Ki Hwan;Lee, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • The river plan executes the role for prevention of disaster and protection of environment, and requires the surveying results with high accuracies for managing river, dam, reservoir which will be the major infrastructures. The purpose of this study is for comparing and analyzing the results of river surveying which is used widely for disaster management and construction industry support. The results are gathered by using LiDAR which is being used in Korea recently and by using Total station. Study area is chosen at upper area of Bukhan River which is located at Gangwon-do. Total 2 cross-sections of the two methods are extracted from the study area. The standard deviation of land part is about 0.017m which shows little difference between two methods, but the Airborne LiDAR results cannot survey the heights of the points accurately at the singular points with vertical structure and water body part. To overcome the problems through this study, there should be ways to survey the bottom river through transmission of water level within the same margin scope as land part and to survey detailed facilities used by laser exactly through continuous research and experiment. When implementation stage comes, this study expect that this document will be utilized variously for making decision in the area of planning and drawing of business and engineering not just for river regarding the major area or the area that people cannot access.