• 제목/요약/키워드: Productivity Impacting Factors

검색결과 3건 처리시간 0.014초

Multiple Regression Technique for Productivity Analysis of the Jointed Plane Concrete Pavement (JPCP)

  • Yoo, Wi-Sung
    • 한국건설관리학회논문집
    • /
    • 제9권6호
    • /
    • pp.268-276
    • /
    • 2008
  • In highway construction projects, concrete pavement productivity has been challenged with constructors and decision-makers; at present there are few methods available to accurately evaluate the factors impacting on it. Any inefficient method to analyze it leads to the excessive schedule, higher rehabilitation costs, shorter service life, and reduction of ride quality. To implement these negative outcomes, constructors or decision-makers need a systematic tool that can be used to categorize the factors related to construction productivity. This paper applies multiple regression technique for productivity analysis of the Jointed Plane Concrete Pavement (JPCP), identifies the significant factors, and provides a predictive model assisting in monitoring and managing the productivity of the JPCP construction process. The completed and progressive projects are employed to derive and assess the proposed model. The results are analyzed to illustrate its capabilities.

Deep Learning 기반 공동주택 마감공사 단위작업별 생산성 예측모델 개발 - 내장공사를 중심으로 - (The Development of Productivity Prediction Model for Interior Finishes of Apartment using Deep Learning Techniques)

  • 이기륜;한충희;이준복
    • 한국건설관리학회논문집
    • /
    • 제20권2호
    • /
    • pp.3-12
    • /
    • 2019
  • 국내 건설산업에서 생산성 정보는 중요성과 그 기능에도 불구하고 생산성 데이터의 수집 및 분석 방법이 체계화되어 있지 못하다. 또한 생산성 관리는 대부분 현장관리자의 경험과 직관에 의존하고 있으며 생산성 데이터를 공사계획 및 관리에 적극 활용하지 못하고 있는 상황이다. 따라서 본 연구에서는 공동주택 마감공사의 생산성 예측 및 생산성 영향요인을 분석할 수 있는 기반을 마련하기 위해 단위작업별 생산성 관련 데이터를 수집하여 딥러닝 기반의 생산성 예측모델을 개발하고자 한다. 연구결과인 딥러닝 기반의 공동주택 단위작업별 생산성 예측모델은 신뢰할 수 있는 생산성 정보 데이터에 딥러닝을 적용하여 향후 데이터가 축적될수록 발전되는 기술로 공동주택 프로젝트 관리시스템의 기본 모듈이 될 수 있다. 또한 과거 유사한 프로젝트의 생산성 데이터를 통한 개산견적, 공정계획을 위한 작업일수 산정, 투입인원 산정 등과 같은 프로젝트 엔지니어링 과정에 활용 가능하며 공사 진행 중 예측과 다른 생산성 발견 시 원인 분석에 용이하여 신속한 대응 및 향후 예방이 가능할 것으로 기대된다.

South Dakota 토양의 발생, 분류 및 관리 (South Dakota Soils: Their Genesis, Classification, and Management)

  • 더글러스 D. 말로;유진희;김시주;정덕영
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.413-433
    • /
    • 2010
  • South Dakota is an important agricultural state in the United States with annual cash receipts from agricultural products exceeding $9 billion dollars. This production is possible because of large areas of productive soils. This publication describes the general characteristics and qualities of the major soil groups recognized in South Dakota. The soil forming factors are briefly described, soil classification is introduced, and the genesis of typical Udalf and Ustoll soils are discussed. Soil management issues impacting the use of SD soils are considered. Long-term (>70 yrs) cultivation has significantly reduced surface soil organic carbon levels (>30% reduction) when compared to non-cultivated soil. Soil test phosphorus levels significantly increased in cultivated fields due to commercial P fertilization. The major long-term production problems for SD soils are conservation of soil moisture, organic matter and nitrogen losses, fertility management, and wind and water erosion control.