• Title/Summary/Keyword: Production technology

Search Result 15,095, Processing Time 0.042 seconds

Determination of Marginal Sowing Date for Soybean in Paddy Field Cultivation in the Southern Region of Korea

  • Park, Hyeon Jin;Han, Won-Young;Oh, Ki-Won;Shin, Sang-Ouk;Lee, Byong Won;Ko, Jong-Min;Baek, In Youl;Kang, Hang Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.104-112
    • /
    • 2016
  • A double-cropping system with soybean (Glycine max) following the cultivation of potato, garlic, and onion is widely adopted in the southern region of Korea. For this system, marginal dates for planting must be determined for profitable soybean yields, because the decision to plant soybean as a second crop is occasionally delayed by harvest of the first crop and weather conditions. In order to investigate the effect of planting date on soybean yield, three cultivars (early and late maturity) were planted on seven different dates from May 1 to July 30 in both paddy and upland fields across 2012 and 2013. Soybean yields were significantly different among the planting dates and the cultivars; however, the interaction between cultivar and planting date was not significant. Based on linear regression, the maximum yield of soybean was reached with a June 10 planting date, with a sharp decline in yield for crops planted after this date. The results of this study were consistent with those of a previous one that recommends early and mid-June as the optimum planting period. Regardless of soybean ecotype, a reduction in yield of greater than 20% occurred when soybean was planted after mid-July. Frost during soybean growth can reduce yields, and the late maturity cultivars planted on July 30 were damaged by frost before completing maturation and harvest; however, early maturity cultivars were safely harvested. For sufficient time to develop and reach profitable yields, the planting of soybean before mid-July is recommended.

Plasma electrolytic processing for polishing of stainless steel surfaces

  • Van, Thanh Dang;Kim, Sung-W.;Kim, Jong-R.;Kim, Sang-G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.137-137
    • /
    • 2008
  • This paper presents the ability of plasma electrolytic polishing technology to polish surface of stainless steel materials. The results show that the surface of its can be polished clearly using potentiostatic regimes in various concentration of $(NH_4)_2SO_4$ solution that had been warmed to a certain initial temperature. The equipment and deposition produces for polishing process are described and the effect of processing parameters on the characterizations polishedsamples has been has been investigated.

  • PDF

Predicting Crop Production for Agricultural Consultation Service

  • Lee, Soong-Hee;Bae, Jae-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Smart Farming has been regarded as an important application in information and communications technology (ICT) fields. Selecting crops for cultivation at the pre-production stage is critical for agricultural producers' final profits because over-production and under-production may result in uncountable losses, and it is necessary to predict crop production to prevent these losses. The ITU-T Recommendation for Smart Farming (Y.4450/Y.2238) defines plan/production consultation service at the pre-production stage; this type of service must trace crop production in a predictive way. Several research papers present that machine learning technology can be applied to predict crop production after related data are learned, but these technologies have little to do with standardized ICT services. This paper clarifies the relationship between agricultural consultation services and predicting crop production. A prediction scheme is proposed, and the results confirm the usability and superiority of machine learning for predicting crop production.

Pollution prevention in the process of dye production by cleaner production methodology (청정생산방법론에 의한 염료생산 공정의 청정화)

  • Park, Chulhwan;Kim, Tak-Hyun;Kim, Sangyong
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • This study shows the evaluation and consulting for pollution prevention of dye production by cleaner production methodology. Especially, this study intended to investigate the methods for reduction of process water and recovery of organic solvent (DMF), and to modify the process for higher qualified products in the acid dye production by cleaner production methodology. This methodology, consisting of 7 sequential phases (business leadership decision to start, problem definition, evaluation of the screened options, option selection for implementation, implementation, monitoring and sustainable implementation), is based on initial developments in the USA and Western Europe. Reduction of process water over 25%, recovery of DMF and solubility enhancement of acid dye over 2 times were achieved.

  • PDF

Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen (원자력 수소 경제성 비교를 위한 수소 생산 방법별 생산단가 분석)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Yoon, Young-Seek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.218-226
    • /
    • 2006
  • It can be obtained from hydrocarbon and water, specially production of hydrogen from natural gas is most commercial and economical process among the hydrogen production methods, and has been used widely. However, conventional hydrogen production methods are dependent on fossil fuel such as natural gas and coal, and it may be faced with problems such as exhaustion of fossil fuels, production of greenhouse gas and increase of feedstock price. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. However, nuclear hydrogen must be economical comparing with conventional hydrogen production method. Therefore, hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma (포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구)

  • Moon, Kyoung Il;Byun, Sang Mo;Cho, Yong Ki;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.

Biodiesel Production Technology from Sewage Sludge (하수 슬러지로부터 바이오디젤 생산기술)

  • Kim, Jae-Kon;Park, Jo-Yong;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.688-700
    • /
    • 2013
  • The potential of biodiesel production technology using lipids extracted from sewage sludge was investigated. Despite the bright prospect of biodiesel production, efforts to commercialize it have been very limited. One of the major obstacles has been the high price associated with refined oil feedstock, which makes up nearly 70-75% of the total production costs. Hence, in order to reduce the cost of biodiesel production, using cheaper feedstock such as waste oil or low-quality oil has been proposed. Especially, sewage sludge, a relatively inexpensive feedstock, is a promising raw material for such a purpose. In this study, it is aimed to review biodiesel production technology from sewage sludge as a lipid feedstock. It is process modifications to combine the oil extraction steps, fuel conversion steps (i.e. in situ transesterification, thermo-chemical process with non-catalytic heterogeneous biodiesel production) and fuel quality from sewage sludge.

Improvement of Amidase Production by a Newly Isolated Delftia tsuruhatensis ZJB-05174 Through Optimization of Culture Medium

  • Wang, Yuan-Shan;Xu, Jian-Miao;Zheng, Ren-Chao;Zheng, Yu-Guo;Shen, Yin-Chu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1932-1937
    • /
    • 2008
  • The R-amidase production by a newly isolated strain of Delftia tsuruhatensis ZJB-05174 was optimized in this paper. Effects of factors such as carbon sources, nitrogen sources, and inducers on amidase production were investigated. The medium composition was optimized using central composite designs and response surface analysis. The optimal medium components for enhanced amidase production were found to be as follows: glucose, 8.23 g/l; yeast extract, 11.59 g/l; 2,2-(R,S)-dimethylcyclopropane carboxamide, 1.76 g/l; NaCl, 1 g/l; ${KH_2}{PO_4}$ 1 g/l; and ${K_2}{HPO_4}$ 1 g/l. A maximum enzyme production of 528.21 U/l was obtained under the optimized conditions, which was 4.7 times higher than that obtained under initial conditions.

Immunomodulatory Properties of Lactobacillus plantarum NC8 Expressing an Anti-CD11c Single-Chain Fv Fragment

  • Liu, Jing;Yang, Guilian;Gao, Xing;Zhang, Zan;Liu, Yang;Yang, Xin;Shi, Chunwei;Liu, Qiong;Jiang, Yanlong;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.160-170
    • /
    • 2019
  • The lactic acid bacteria species Lactobacillus plantarum (L. plantarum) has been used extensively for vaccine delivery. Considering to the critical role of dendritic cells in stimulating host immune response, in this study, we constructed a novel CD11c-targeting L. plantarum strain with surface-displayed variable fragments of anti-CD11c, single-chain antibody (scFv-CD11c). The newly designed L. plantarum strain, named 409-aCD11c, could adhere and invade more efficiently to bone marrow-derived DCs (BMDCs) in vitro due to the specific interaction between scFv-CD11c and CD11c located on the surface of BMDCs. After incubation with BMDCs, the 409-aCD11c strain harboring a eukaryotic vector pValac-GFP could lead to more efficient expression of GFP compared with wild-type strains shown by flow cytometry analysis, indicating the enhanced translocation of pValac-GFP from L. plantarum to BMDCs. Similar results were also observed in an in vivo study, which showed that oral administration resulted in efficient expression of GFP in both Peyer's patches (PP) and mesenteric lymph nodes (MLNs) within 7 days after the last administration. In addition, the CD11c-targeting strain significantly promoted the differentiation and maturation of DCs, the differentiation of $IL-4^+$ and $IL-17A^+$ T helper (Th) cells in MLNs, as well as production of $B220^+$ $IgA^+$ B cells in the PP. In conclusion, this study developed a novel DC-targeting L. plantarum strain which could increase the ability to deliver eukaryotic expression plasmid to host cells, indicating a promising approach for vaccine study.