• Title/Summary/Keyword: Production technique

Search Result 2,154, Processing Time 0.028 seconds

Characterization of intrinsic molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing: impacted by source origin

  • Alessandra M.R.C.B., de Oliveira;Peiqiang, Yu
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.256-263
    • /
    • 2023
  • Objective: Feed molecular structures can affect its availability to gastrointestinal enzymes which impact its digestibility and absorption. The molecular spectroscopy-attenuated total reflectance Fourier transform infrared vibrational spectroscopy (ATR-FTIR) is an advanced technique that measures the absorbance of chemical functional groups on the infrared region so that we can identify and quantify molecules and functional groups in a feed. The program aimed to reveal the association of intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The objective of this study was to characterize special intrinsic carbohydrate and protein-related molecular structure spectral profiles of feedstock and co-products (meal and pellets) from bio-oil processing from two source origins: Canada (CA) and China (CH). Methods: The samples of feedstock and co-products were obtained from five different companies in each country arranged by the Canola Council of Canada (CCC). The molecular structure spectral features were analyzed using advanced vibrational molecular spectroscopy-ATR-FTIR. The spectral features that accessed included: i) protein-related spectral features (Amide I, Amide II, α-helix, β-sheet, and their spectral intensity ratios), ii) carbohydrate-related spectral features (TC1, TC2, TC3, TC4, CEC, STC1, STC2, STC3, STC4, TC, and their spectral intensity ratios). Results: The results showed that significant differences were observed on all vibrationally spectral features related to total carbohydrates, structural carbohydrates, and cellulosic compounds (p<0.05), except spectral features of TC2 and STC1 (p>0.05) of co-products, where CH meals presented higher peaks of these structures than CA. Similarly, it was for the carbohydrate-related molecular structure of canola seeds where the difference between CA and CH occurred except for STC3 height, CEC and STC areas (p>0.05). The protein-related molecular structures were similar for the canola seeds from both countries. However, CH meals presented higher peaks of amide I, α-helix, and β-sheet heights, α-helix:β-sheet ratio, total amide and amide I areas (p<0.05). Conclusion: The principal component analysis was able to explain over 90% of the variabilities in the carbohydrate and protein structures although it was not able to separate the samples from the two countries, indicating feedstock and coproducts interrelationship between CH and CA.

A pilot study on the application of environmental DNA to the estimation of the biomass of dominant species in the northwestern waters of Jeju Island (제주도 서북 해역에서의 우점종 생물량 추정에 환경 유전자의 적용에 관한 시범 연구)

  • KANG, Myounghee;PARK, Kyeong-Dong;MIN, Eunbi;LEE, Changheon;KANG, Taejong;OH, Taegeon;LIM, Byeonggwon;HWANG, Doojin;KIM, Byung-Yeob
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • Using environmental DNA (eDNA) in the fisheries and oceanography fields, research on the diversity of biological species, the presence or absence of specific species and quantitative evaluation of species has considerably been performed. Up to date, no study on eDNA has been tried in the area of fisheries acoustics in Korea. In this study, the biomass of a dominant species in the northwestern waters of Jeju Island was examined using 1) the catch ratio of the species from trawl survey results and 2) the ranking ratio of the species from the eDNA results. The dominant species was Zoarces gillii, and its trawl catch ratio was 68.2% and its eDNA ratio was 81.3%. The Zoarces gillii biomass from the two methods was 7199.4 tons (trawl) and 8584.6 tons (eDNA), respectively. The mean and standard deviation of the acoustic backscattering strength values (120 kHz) from the entire survey area were 135.5 and 157.7 m2/nm2, respectively. The strongest echo signal occurred at latitude 34° and longitude 126°15' (northwest of Jeju Island). High echo signals were observed in a specific oceanographic feature (salinity range of 32-33 psu and the water temperature range of 19-20℃). This study was a pilot study on evaluating quantitatively aquatic resources by applying the eDNA technique into acoustic-trawl survey method. Points to be considered for high-quality quantitative estimation using the eDNA to fisheries acosutics were discussed.

PPIA, HPRT1, and YWHAZ are suitable reference genes for quantitative polymerase chain reaction assay of the hypothalamic-pituitary-gonadal axis in sows

  • Kim, Hwan-Deuk;Jo, Chan-Hee;Choe, Yong-Ho;Lee, Hyeon-Jeong;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1850-1859
    • /
    • 2022
  • Objective: The quantitative reverse transcription polymerase chain reaction (qPCR) is the most accurate and reliable technique for analysis of gene expression. Endogenous reference genes (RGs) have been used to normalize qPCR data, although their expression may vary in different tissues and experimental conditions. Verification of the stability of RGs in selected samples is a prerequisite for reliable results. Therefore, we attempted to identify the most stable RGs in the hypothalamic-pituitary-gonadal (HPG) axis in sows. Methods: The cycle threshold values of nine commonly used RGs (18S, HPRT1, GAPDH, RPL4, PPIA, B2M, YWHAZ, ACTB, and SDHA) from HPG axis-related tissues in the domestic sows in the different stages of estrus cycle were analyzed using two RG-finding programs, geNorm and Normfinder, to rank the stability of the pool of RGs. In addition, the effect of the most and least stable RGs was examined by normalization of the target gene, gonadotropin-releasing hormone (GnRH), in the hypothalamus. Results: PPIA, HPRT1, and YWHAZ were the most stable RGs in the HPG axis-related tissues in sows regardless of the stages of estrus cycle. In contrast, traditional RGs, including 18S and ACTB, were found to be the least stable under these experimental conditions. In particular, in the normalization of GnRH expression in the hypothalamus against several stable RGs, PPIA, HPRT1, and YWHAZ, could generate significant (p<0.05) elevation of GnRH in the preovulatory phase compared to the luteal phase, but the traditional RGs with the least stability (18S and ACTB) did not show a significant difference between groups. Conclusion: These results indicate the importance of verifying RG stability prior to commencing research and may contribute to experimental design in the field of animal reproductive physiology as reference data.

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.

Anomaly Detections Model of Aviation System by CNN (합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구)

  • Hyun-Jae Im;Tae-Rim Kim;Jong-Gyu Song;Bum-Su Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • Recently, Urban Aircraft Mobility (UAM) has been attracting attention as a transportation system of the future, and small drones also play a role in various industries. The failure of various types of aviation systems can lead to crashes, which can result in significant property damage or loss of life. In the defense industry, where aviation systems are widely used, the failure of aviation systems can lead to mission failure. Therefore, this study proposes an anomaly detection model using deep learning technology to detect anomalies in aviation systems to improve the reliability of development and production, and prevent accidents during operation. As training and evaluating data sets, current data from aviation systems in an extremely low-temperature environment was utilized, and a deep learning network was implemented using the convolutional neural network, which is a deep learning technique that is commonly used for image recognition. In an extremely low-temperature environment, various types of failure occurred in the system's internal sensors and components, and singular points in current data were observed. As a result of training and evaluating the model using current data in the case of system failure and normal, it was confirmed that the abnormality was detected with a recall of 98 % or more.

A Study on the Performance Variations of Liquid-crystal Aqueous Cleaning Agents with their Formulating Components and Mixing Ratios (액정 세척용 수계 세정제의 배합성분과 혼합비에 따른 성능 변화)

  • Jeong, Jae-Yong;Lee, Min-Jae;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.103-116
    • /
    • 2010
  • It has been reported that the LCD panel market in the FPD industry is become growing and its panel size and production capacity are increasing, and its manufacturing technique is improved every year. FPD manufacturing process requires high cleanliness in its overall process. Especially, FPD cleaning process which accounts for 30~40% of total manufacturing process is very important in its technological and productivity aspects. It is difficult to remove residual liquid-crystal in the fine gap after liquid-crystal injection process in the cell. In this study, aqueous cleaning agents with excellent cleaning, rinsing, and penetrating abilities, but minimum ion content for LCD panel were formulated through mixing glycol ether-type and glycol dimethyl ether-type solvents and nonionic surfactants which are widely used as raw materials for alternative cleaning agents because of environmental regulation at home and abroad. And the formulated cleaning agents were applied to clean FPD liquid crystal after its injection in the cell. Physical properties, cleaning efficiencies, and rinsabilities of the formulated cleaning agents with different combination ratios of solvents, surfactants and additives were measured. As experimental results, the formulated cleaning agents showed higher wetting indices and cloud point than the traditional commercial cleaning agent. And it was found that cleaning efficiencies of the formulated cleaning agents were influenced by the structure of main solvents in them and the types of liquid crystal as soil for cleaning. The best cleaning agents among the formulated cleaning agents showed similar cleaning efficiencies and better rinsabilities compared to the conventional cleaning agent.

N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats

  • Ronghuan Yin;Ronglan Yin;Man Bai;Yixing Fan;Zeying Wang;Yubo Zhu;Qi Zhang;Taiyu Hui;Jincheng Shen;Siyu Feng;Wenlin Bai
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.555-569
    • /
    • 2023
  • Objective: The objective of this study was to investigate the effects of N6-Methyladenosine modification-circRNA-zinc finger protein 638 (m6A-circRNA-ZNF638) on the induced activation of secondary hair follicle (SHF) stem cells with its potential mechanisms in cashmere goats. Methods: The m6A modification of ZNF638 was analyzed using methylation immunoprecipitation with real-time quantitative polymerase chain reaction technique in SHF stem cells. The effects of circRNA-ZNF638 on the induced activation of SHF stem cells in m6A dependence were evaluated through the overexpression of circRNA-ZNF638/its m6A-deficient mutants in circRNA-ZNF638 knockdown SHF stem cells. The competitive binding of miR-361-5p to circRNA-ZNF638/Wnt5a 3'- untranslated region was analyzed through Dual-luciferase reporter assay. Results: The m6A-circRNA-ZNF638 had significantly higher transcription at anagen SHF bulge of cashmere goats compared with that at telogen, as well as it positively regulated the induced activation of SHF-stem cells in cashmere goats. Mechanismly, m6A-circRNA-ZNF638 sponged miR-361-5p to heighten the transcriptional expression of Wnt5a gene in SHF-stem cells. We further demonstrated that the internal m6A modification within circRNA-ZNF638 is required for mediating the miR-361-5p/Wnt5a pathway to regulate the induced activation of SHF stem cells through an introducing of m6A-deficient mutant of circRNA-ZNF638. Conclusion: The circRNA-ZNF638 contributes the proper induced activation of SHF-stem cells in cashmere goats in m6A-dependent manner through miR-361-5p/Wnt5a axis.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.