• Title/Summary/Keyword: Production potential.

Search Result 4,687, Processing Time 0.028 seconds

Trends in Hybrid Cultured Meat Manufacturing Technology to Improve Sensory Characteristics

  • AMM Nurul Alam;Chan-Jin Kim;So-Hee Kim;Swati Kumari;Seung-Yun Lee;Young-Hwa Hwang;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • The projected growth of global meat production over the next decade is attributed to rising income levels and population expansion. One potentially more pragmatic approach to mitigating the adverse externalities associated with meat production involves implementing alterations to the production process, such as transitioning to cultured meat, hybrid cultured meat, and meat alternatives. Cultured meat (CM) is derived from animal stem cells and undergoes a growth and division process that closely resembles the natural in vivo cellular development. CM is emerging as a widely embraced substitute for traditional protein sources, with the potential to alleviate the future strain on animalderived meat production. To date, the primary emphasis of cultured meat research and production has predominantly been around the ecological advantages and ethical considerations pertaining to animal welfare. However, there exists substantial study potential in exploring consumer preferences with respect to the texture, color, cuts, and sustainable methodologies associated with cultured meat. The potential augmentation of cultured meat's acceptance could be facilitated through the advancement of a wider range of cuts to mimic real muscle fibers. This review examines the prospective commercial trends of hybrid cultured meat. Subsequently, the present state of research pertaining to the advancement of scaffolding, coloration, and muscle fiber development in hybrid cultured meat, encompassing plant-based alternatives designed to emulate authentic meat, has been deliberated. However, this discussion highlights the obstacles that have arisen in current procedures and proposes future research directions for the development of sustainable cultured meat and meat alternatives, such as plant-based meat production.

Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid

  • Zhang, Benyue;Zhao, Hongyan;Yu, Hairu;Chen, Di;Li, Xue;Wang, Weidong;Piao, Renzhe;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.739-747
    • /
    • 2016
  • The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l-1 g-1 VS, 322 l-1 g-1 VS, and 304 l-1 g-1 VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml-1 g-1 VS, 461.73 ml-1 g-1 VS, and 451.76 ml-1 g-1 VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

Study on Potential Feedstock Amount Analysis of Biodiesel in Korea (한국의 바이오디젤 원료 잠재량 분석 연구)

  • MIN, KYONG-IL;PARK, CHEON-KYU;KIM, JAE-KON;Na, BYUNG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.447-461
    • /
    • 2016
  • Recently, the Renewable Fuel Standard(RFS) has been commenced from July 31, 2015 in the New and Renewable Energy Act for expanding the supply of renewable energy and reduction of national GHG target in Korea. The biodiesel is only a means of implementation for the RFS, therefore the biodiesel supply expansion is important for fulfilling the RFS obligation policy. The major key points of the biodiesl supply are expanding domestic feedstocks due to the over 60% dependence on foreign feedstock and reducing the price of feedstock because of the over 70% occupation of feed stock price in the biodiesl production cost. Therefore, we estimated actual amount of potential feedstocks which are possible to use for biodiesl production in Korea and investigated technical and political improvements for expanding biodiesl. For estimating a potential feedstocks, first selected the potential biodiesl feedstocks by investigating the status of global biodiesl feedstocks and then analyzed the possible potential amount of each feedstock by surveying the generation situations, the distribution structures and the technical level.

Development of DSM Potential Evaluation Procedures and Algorithm (DSM 잠재량 평가절차 및 알고리즘 개발)

  • Rhee, Chang-Ho;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.917-919
    • /
    • 1997
  • Recently, electric industry confront a strategical change and high competiveness environment in the course of deregulation. Especially, rapid growth in electricity demand, financial need for new power plant construction, and environmental problems have led to search for more efficient energy production and energy conservation technologies in Korea. Due to the potential energy and cost savings, DSM(Demand-Side Management) plays and important role in the electric resource planning. In this paper, we suggest DSM potential evaluation procedures and algorithm. Also, we present screening analysis methods for DSM potential evaluation.

  • PDF

Seaweed Biomass Resources in Korea (한국의 해조류 바이오매스자원 현황)

  • Lee, Shin-Youb;Ahn, Jae-Woo;Hwang, Hyeong-Jin;Lee, Sun-Bok
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.267-276
    • /
    • 2011
  • There is a growing worldwide interest in the potential of marine biomass as an environmentally friendly and economically sustainable resource. Due to the great lack of comprehensive information about domestic seaweed resources, this study aimed to analyze the existing literature on the production and types of domestic seaweed species. Based on this data the possibilities of industrial use of domestic seaweed for the production of biofuels and bioplastics had been assessed. Our review took into account the seaweed species on domestic coasts as well as the species currently in great production via seaweed farming. Due to their wide distribution, their status as farmed crops, and the likelihood of securing their reliable supply, Codium fragile, Hizikia fuciformis, and Gelidium amansii were deemed to be the most appropriate candidates for domestic industrial use. The industrial potential of seaweed biomass was also explored by comparing the predicted amount of biomass necessary to replace current gasoline and plastics use with currently available farming space. The results of our study imply that once a steady and adequate supply of the proper kinds of seaweed can be secured through seaweed farming, there is a great potential for the development of new seaweed-based biofuels and bioplastics industries in Korea.

The Allocation of Inspection Efforts Using a Knowledge Based System

  • Kang, Kyong-sik;Stylianides, Christodoulos;La, Seung-houn
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.18-24
    • /
    • 1990
  • The location of inspection stations is a significant component of production systems. In this paper, a prototype expert system is designed for deciding the optimal location of inspection stations. The production system is defined as a single channel of n serial operation stations. The potential inspection station can be located after any of the operation stations. Nonconforming units are generated from a compound binomial distribution with known parameters at any given operation station. Traditionally Dynamic programming, Zero-one integer programming, or Non-linear programming techniques are used to solve this problem. However a problem with these techniques is that the computation time becomes prohibitively large when t be number of potential inspection stations are fifteen or more. An expert system has the potential to solve this problem using a rule-based system to determine the near optimal location of inspection stations. This prototype expert system is divided into a static database, a dynamic database and a knowledge base. Based on defined production systems, the sophisticated rules are generated by the simulator as a part of the knowledge base. A generate-and-test inference mechanism is utilized to search the solution space by applying appropriate symbolic and quantitative rules based on input data. The goal of the system is to determine the location of inspection stations while minimizing total cost.

  • PDF

Yield Potential of Improved Tropical Japonica Rice under Temperate Environment in Korea

  • Lee, Kyu-Seong;Ko, Jae-Kwon;Kim, Jong-Seok;Lee, Jae-Kil;Shin, Hyun-Tak;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.214-220
    • /
    • 1999
  • Rice production in Korea has markedly increased during the last two decades due to newly developed high yielding varieties and improved production technology. This experiment was conducted to determine the potential of tropical japonica germplasm in enhancing the yield of temperate japonica. The yield performance of two tropical japonicas (IR 65597-29-3-2 and IR66154-52-1-2) and one temperate japonica (Dongjinbyeo) was compared at different plant densities and nitrogen levels under Korean environmental conditions. Although tropical japonicas showed low tillering habit and large panicles, they had similar leaf area index and dry weight at heading stage to Dongjinbyeo of the high tillering type indicating that there was not much difference between tropical and temperate japonica in terms of biomass production. The highest milled rice yield of 6.15 t/ha was obtained from Dongjinbyeo at a high nitrogen level with less planting density (220 kg N/ha and 30 $\times$ 15 cm). However, those of the two tropical japonicas were 5.36 t/ha at the condition of 165 kg N/ha and 30 x 10 cm planting density and 5.06 t/ha at the condition of 165kgN/ha and 15 x 15 cm planting density, respectively. Ripened grain of tropical japonicas ranged from 65 to 87%, while that Dongjinbyeo ranged from 82 to 97% under Korean conditions.

  • PDF

Antioxidant potential of buffalo and cow milk Cheddar cheeses to tackle human colon adenocarcinoma (Caco-2) cells

  • Huma, Nuzhat;Rafiq, Saima;Sameen, Aysha;Pasha, Imran;Khan, Muhammad Issa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.287-292
    • /
    • 2018
  • Objective: The aim of present study was to assess the anti-oxidant potential of water-soluble peptides (WSPs) extract derived from buffalo and cow milk Cheddar cheeses at different stages of ripening. Methods: The antioxidant potential of WSPs extract was assessed through 2,2'-azinobis-3-ethylbenzothiazoline-6sulfonic acid (ABTS)-radical scavenging activity. In addition, impact of WSPs extract on cell viability and production of reactive oxygen species (ROS) in human colon adenocarcinoma Caco-2 (tert-butylhydroperoxide-induced) cell lines was also evaluated. Results: The ABTS-radical scavenging activity increased progressively with ripening period and dose-dependently in both cheeses. However, peptide extract from buffalo milk Cheddar cheese demonstrated relatively higher activity due to higher contents of water-soluble nitrogen. Intracellular ROS production in Caco-2 cells decreased significantly (p<0.05) till 150th day of cheese ripening and remained constant thereafter. Additionally, dose-dependent response of WSPs extract on antioxidant activity was noticed in the Caco-2 cell line. Conclusion: On the basis of current in vitro study, the Cheddar cheese WSPs extract can protect intestinal epithelium against oxidative stress due to their antioxidant activity.

Effects of the Grapevine Shoot Extract on Free Radical Scavenging Activity and Inhibition of Pro-inflammatory mediator Production in RAW264.7 Macrophages (포도나무가지 추출물의 프리라디칼 소거 작용 및 염증 발현 매개인자 생성 억제 효과)

  • 허선경;이상국;김선숙;허연회;안수미
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.188-193
    • /
    • 2001
  • Free radical scavengers or quenching agents for reactive oxygen species (ROS) present in consumable fruits, vegetables, and beverages have received considerable attention as potential antioxidants, and thus uses for treatment of several human diseases. In this study, grapevine shoot extract (GSE) containing high concentration of resveratrol and viniferine was evaluated for antioxidant potential and inhibition of pro-inflam-matory mediator production. Utilizing 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and xanthine oxidase (XOD) inhibition assay the GSE showed inhibitory effects of DPPH radical scavenging and XOD activity with the $IC_{50}$/ values of 34.5 and 155 $\mu\textrm{g}$/ml, respectively. In addition, GSE also exhibited the inhibition of prostaglandin E$_2$ (PGE$_2$) and nitric oxide (NO) production in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells with the $IC_{50}$/ value of 6.4 and 14.5 $\mu\textrm{g}$/ml, respectively. This result suggests that grapevine shoot extract has the potential activity as a natural antioxidant or antiinflammatory agent.

  • PDF

Performance Improvement on the Re-Liquefaction System of Ethylene Carrier using Low-Global Warming Potential Refrigerants (Low - Global Warming Potential 냉매를 이용한 에틸렌 수송선의 재액화 시스템 성능개선)

  • Ha, Seong-Yong;Choi, Jung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.415-420
    • /
    • 2018
  • The development of sail gas has increased the production of ethane as well as natural gas. The decline in the market price for ethane has led to a change in the petroleum-based ethylene production process into an ethane-based ethylene production process and an increase in the ethane/ethylene trade volume. Large-scale ethane/ethylene carrier have been needed due to an increase in long-distance trade from the US, and cargo type change have leaded to consider a liquefaction process to re-liquefy Boil-Off gas generated during the voyage. In this paper, the liquefaction system of Liquefied Ethane Gas carrier was evaluated with Low-GWP (Low-Global Warming Potential) refrigerant and process parameters, Boil-Off Gas pressure and expansion valve outlet pressure, were optimized. Low-GWP refrigerants were propane (R290), propylene(R1270), carbon dioxide(R744) was considered at two type of liquefaction process such as Linde and cascade cycle. The results show that the optimal pressure point depends on the individual refrigerant and the highest liquefaction efficiency of carbon dioxide (R744) - propane (R290) refrigerant.