• 제목/요약/키워드: Production plant

검색결과 5,385건 처리시간 0.035초

백꽃으로부터 분리한 Leuconostoc mesenteroides DB3의 특성 (Isolation and Characterization of Lactic acid bacteria Leuconostoc mesenteroides DB3 from Camellia japonica Flower)

  • 김삼웅;신다혜;갈상완;방규호;김다솜;지원재
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.915-922
    • /
    • 2023
  • 동백꽃으로부터 분리된 24 Leuconostoc spp. 균주들에 대한 항균활성 분석 결과, Leuconostoc mesenteroides DB3가 E. coli, Salmonella Typhimurium, Bacillus cereus, Staphylococcus aureus, Candida albicans 등에 대해 우수한 것으로 나타났다. 내산성 분석결과 pH 2.5까지는 내성이 존재하고, pH 2.0에서는 내성이 존재하지 않았지만, 비교적 우수한 내산성이 존재했다. 담즙산에 대해서는 시험 구간내에서는 모두 안정한 것으로 관찰되었다. L. mesenteroides DB3는 표준균주인 L. mesenteroides KCTC3505에 비교하여 성장력이 늦은 것으로 나타났고, 생육적온은 30℃로 관찰되었다. 30℃에서 성장곡선의 관찰결과, L. mesenteroides DB-3는 L. mesenteroides KCTC3505에 비교하여 성장이 지연되었고, 18시간 이후에 정지기에 도달되었다. pH 변화는 성장곡선에 연동하여 변화되었지만, pH 3.98 이상에서 유지되었다. L. mesenteroides DB-3는 L. mesenteroides KCTC3505에 비교하여 초기 항균활성이 높았지만, 대수증식기 후반부 이후에는 유사한 것으로 나타났다. 유산 함량은 성장 곡선에 연동되어 나타났으며, 초기에는 L. mesenteroides DB-3가 낮게 생성되었지만, 대수증식기 후반부 이후에는 유사하였다. 뮤이신 부착력은 L. mesenteroides DB-3가 L. mesenteroides KCTC3505보다 우수한 것으로 평가되었다. 등유에 대한 유화 능력은 L. mesenteroides KCTC3505와 DB-3 모두 우수한 것으로 나타났으며, 소수성이 강한 바이오계면활성제인 것으로 추정된다. 이상의 결과로 볼 때, 본 연구에 사용된 Leuconostoc mesenteroides DB3는 우수한 항균력, 내산성, 내담즙성 및 뮤이신 부착력에 기인하여 프로바이오틱스로써 활용 가능성이 높은 것으로 평가된다.

소인제(Aeonium sedifolium) 잎 유래 phenolic 성분의 항산화, 피부주름생성 억제, 항염증 및 모공 수축 효과 (Anti-oxidation, anti-inflammation, anti-wrinkle, and pore-tightening effects of phenolic compounds from Aeonium sedifolium leaves)

  • 김정인;김민재;조하경;정다은;박혜진;조영제
    • 한국식품저장유통학회지
    • /
    • 제30권2호
    • /
    • pp.347-357
    • /
    • 2023
  • 소인제(Aeonium sedifolium) 잎의 total phenolics compounds 함량은 열수 및 ethanol 추출물에서 각각 34.49 mg/g, 61.64 mg/g으로 나타났다. 소인제 잎의 solid에 비해 phenolics의 DPPH, ABTS 효과가 더 우수한 결과를 나타내어 생리활성은 phenolic에 의해 발생하는 것으로 확인되었다. 소인제 잎의 항산화 효과는 DPPH가 100 ㎍/mL TPC 농도에서 85% 이상의 높은 소거 활성을 나타내었고, ABTS radical cation decolorization은 열수와 ethanol 추출물에서 모두 100%에 근접한 항산화 활성을 나타내었다. Antioxidant protection factor는 100 ㎍/mL phenolic 농도에서 열수와 ethanol 추출물에서 각각 1.07 PF와 1.22 PF를 나타내었으며, TBARs 저해 효과는 열수와 ethanol 추출물 모두 77% 이상의 활성을 나타내었다. 소인제 잎 추출물의 elastase 저해 활성은 phenolic 100 ㎍/mL의 ethanol 추출물에서 69.03%로, positive control인 ursolic acid의 35.83%보다 2배의 억제효과를 나타내었다. Collagenase 저해활성은 phenolic 농도 100 ㎍/mL에서 열수추출물이 29.82%, ethanol 추출물이 54.76%의 저해 효과를 나타내어 주름개선효과가 우수한 것으로 확인되었다. 소인제 잎의 HAase 저해활성은 400 ㎍/mL phenolic 농도의 열수 및 에탄올 추출물에서 각각 85%, 99.12%의 높은 저해활성을 나타내었다. 소인제잎 추출물의 모공수축 효과는 phenolic 농도 400 ㎍/mL에서 100% 가까운 매우 우수한 효과를 나타내었다. 이상의 결과를 종합해보면 소인제 잎 추출물은 항노화에 관여하는 높은 항산화 활성을 나타내었으며, 피부 주름 생성에 관여하는 elastase와 collagenase 저해활성과 염증반응에 관여하는 hyaluronidase 저해활성이 우수하였으며, 모공수축 효과 또한 매우 우수한 것으로 확인되었다.

희귀 식물 박달목서 유묘의 생장 및 생리적 특성에 대한 차광 효과 (Shading Effects on the Growth and Physiological Characteristics of Osmanthus insularis Seedlings, a Rare Species)

  • 구다은;한심희;임은영;김진;구자정
    • 한국산림과학회지
    • /
    • 제113권1호
    • /
    • pp.88-96
    • /
    • 2024
  • 본 연구는 우리나라의 희귀식물인 박달목서의 현지내·외 보존 및 복원을 위한 생육 환경 조성 시 적정 광 조건을 구명하기 위해 수행되었다. 이를 위해 차광 처리구를 설치하여 전광 기준 100%, 55%, 20%, 10% 상대 광량 조건에서 4월부터 11월까지 생육 관리한 박달목서 유묘의 생장 특성, 잎 형태, 광합성 특성 및 광합성 색소 함량을 조사하였다. 그 결과, 수고와 근원경의 상대 생장률은 광량에 따른 차이가 없었으나, 잎, 줄기 및 뿌리의 건중량 및 잎 수는 55% 상대 광량 조건에서 가장 높았다. 잎의 형태는 광량이 높아질수록 엽면적이 작아지고 두께가 두꺼워지는 경향을 보였다. 광포화점에서의 광합성 속도와 기공전도도를 비롯하여 순양자수율, 암호흡, 잎의 엽록소 a, b와 카로테노이드 함량 역시 55% 상대 광량에서 가장 높았다. 전광 조건에서 박달목서 유묘의 잎은 작고 두꺼워지는 형태적 적응이 나타났으나, 엽록소 함량은 가장 낮아 광합성 속도가 55% 상대 광량보다 떨어졌다. 10%, 20% 상대 광량에서는 광량이 적을수록 엽록소 a, b, 카로테노이드 함량이 감소하였고, 광합성 속도와 암호흡 속도가 낮아졌다. 결론적으로, 박달목서 유묘는 광량에 따라 형태적인 적응 반응을 보였으나, 그늘에서 광합성 효율을 높이는 생리적인 반응은 뚜렷하지 않았다. 또한 생육에 가장 적절한 광조건은 전광의 55% 수준으로, 이 조건에서 광합성이 가장 활발하고 최종 산물인 건중량 생산이 최대로 나타났다. 따라서 박달목서는 현지외 보존을 위한 생육 환경 조성 시 광량이 전광의 55% 정도가 될 수 있도록 조절 관리하는 것이 필요할 것으로 판단된다.

라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정 (Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data)

  • 메안 P 안데스;노미영;임미영;최경이;정정수;김동필
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.384-395
    • /
    • 2023
  • 증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀(MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min-1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.

간척지(干拓地)에서 수도(水稻) 및 기타작물(其他作物)의 내염성(耐鹽性)에 관(關)한 연구(硏究) -6. 염분간척지(鹽分干拓地)에서 수도(水稻)에 대한 N, P, K,의 증비효과에 관(關)하여 (Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas. -6. On the Effects of Increased N. P. K. Applications for Rice Plant in Reclaimed Salty Areas)

  • 임경빈
    • 한국토양비료학회지
    • /
    • 제3권1호
    • /
    • pp.35-41
    • /
    • 1970
  • 10a 당(當) N 10, 15, 20kg, 인산(燐酸) 8, 12, 16kg 및 가리(加里) 8, 12, 16kg의 각각(各各) 3수준(水準)의 조합(組合)인 삼요소증비(三要素增肥) 요인실험(要因實驗)을 농광(農光)을 공시(供試)하여 숙답구(熟畓區), 저(低) 및 고염분구(高鹽分區)(4월말(月末) 각염분농도(各鹽分濃度) 0.5%와 1%)에서 적기재배(適期栽培)로 실시(實施)하여 아래와 같은 결과(結果)를 얻었다. 1. 인산(燐酸)과 가리시비(加里施肥)를 10a 당(當) 8kg으로 고정(固定)하고 N시비(施肥)를 1.5배(倍)와 2배(倍)로 증가(增加)시켰을 때 숙답구(熟畓區)와 염분구(鹽分區)들에서는 다 같이 시비량(施肥量)에 비례(比例)하여 N 흡수(吸收)가 증가(增加)되었다. 그리고 이때의 N 흡수(吸收)는 대체(大體)로 염분구(鹽分區)에서 더 많았다. N 증비처리(增肥處理)를 하거나 삼요소(三要素) 증비처리(增肥處理)를 하면 염분구(鹽分區)에서는 Ca와 Si의 흡수조해(吸收阻害)가 보였다. 2. 숙답구(熟畓區)에서는 N, P, K의 증비(增肥)는 증수(增收)를 가져오지 못하였고 가리(加里) 2배비(倍肥)는 유의(有意)하게 감수(減收)를 가져왔다. 3. 저염분구(低鹽分區)에서 N 증비(增肥)는 고도(高度)의 유의차(有意差)로 증수(增收)에 효과가 있었으며 N 1.5 배비(倍肥)는 12%, N 2배비(倍肥)는 21% 증수(增收)되었다. 인산(燐酸)과 가리(加里)의 증비(增肥)로는 증수(增收)되지 않았다. 4. 고염분구(高鹽分區)에서도 N 증비(增肥)는 유의(有意)하게 증수효과가 있었으며 인산(燐酸)과 가리(加里)의 증비(增肥)로 증수(增收)되는 것 같으나 유의성(有意性)은 없었다. 5. N 증비(增肥)는 숙답구(熟畓區)에서 1.5배(倍)까지는 수수(穗數)가 증가(增加)되었으나 2배비(倍肥)에서는 더 증가(增加)를 보이지 않았으며 저(低) 및 고염분구(高鹽分區)에서는 시비량(施肥量)에 비례(比例)하여 늘었다. 인산증비(燐酸增肥)는 각(各) 실험구(實驗區)에서 수수증가(穗數增加)의 경향(傾向)이 보였으나 가리증비(加里增肥)는 증가(增加)에 효과가 없었다. 6. 수중(穗重)에 대(對)한 N 증비(增肥)의 효과는 숙답구(熟畓區)에서는 감소(減少)로 나타났으며 양염분구(兩鹽分區)에서는 1.5배비(倍肥)까지는 증가(增加)되나 2배비(倍肥)는 1.5배비(倍肥)와 거의 같았다. 인산(燐酸), 가리(加里)의 증비(增肥)는 어느 실험구(實驗區)에서도 수중(穗重)에 영향(影響)을 미치지 못하였다. 천립중(千粒重)에 대(對)한 N, P, K의 증비효과는 숙답구(熟畓區)와 염분구(鹽分區)에서 모두 뚜렷하지 않았다. 수당립수(穗當粒數)에 대(對)한 N 증비효과는 숙답구(熟畓區)에서 감소(減少)의 경향(傾向)이었으나 양염분구(兩鹽分區)에 있어서는 증가(增加)되었다. 수당립수(穗當粒數)에 대(對)한 인산(燐酸), 가리(加里)의 증비효과는 없는것 같았다. 7. 임실율(稔實率)에 대(對)한 N 증비(增肥)의 효과는 숙답구(熟畓區)에서 감소(減少)되었으며 저(低) 및 고염분구(高鹽分區)에서는 N 증비효과가 없었고 인산(燐酸) 및 가리(加里)의 증비(增肥)는 어느 실험구(實驗區)에서도 효과가 없었다. 8. 정현비율(精玄比率)에 대(對)한 N, P, K의 증시효과는 각각(各各) 어느 실험구(實驗區)에서도 없었으나 설미(屑米)는 N 증비(增肥)에 의하여 숙답구(熟畓區) 및 염분구(鹽分區)들에서 다 같이 증가(增加)되었으며 숙답구(熟畓區)에서는 더 현저(顯著)하였다. 9. 고중(藁重)에 대한 N 증비(增肥)의 효과는 숙답구(熟畓區)와 고(高) 및 저염분구(低鹽分區)에서 다같이 증가(增加)되었으며 인산(燐酸), 가리(加里)의 증비(增肥)는 효과가 없었다. 정조중(精租重)/고중(藁重)에 대(對)한 N 증비(增肥)의 효과는 숙답구(熟畓區)에서는 감소(減少)되었으나 저(低) 및 고염분구(高鹽分區)에서는 증가(增加)되었고 인산(燐酸) 및 가리(加里)의 증비효과는 없었다.

  • PDF

포장재배(圃場栽培) 수도(水稻)의 무기영양(無機營養) -[I] 삼요소이용률(三要素利用率)과 양분흡수량(養分吸收量), 수량(收量) 및 건물생산량(乾物生産量)과(乾物生産量)의 관계(關係)- (Mineral Nutrition of the Field-Grown Rice Plant -[I] Recovery of Fertilizer Nitrogen, Phosphorus and Potassium in Relation to Nutrient Uptake, Grain and Dry Matter Yield-)

  • 박훈
    • Applied Biological Chemistry
    • /
    • 제16권2호
    • /
    • pp.99-111
    • /
    • 1973
  • 전국적(全國的)으로 실시한 삼요소(三要素) 시험중(試驗中) 1967년(年) 51개소(個所) 68년(年)에 32개소(個所)에서 N 8, 10, 12, 14kg/10a 수준(水準)과 $P_2O_5$$K_2O$ 각(各) 6과 8kg 시비수준(施肥水準)에 대(對)한 삼요소(三要素) 이용율(利用率)을 조사(調査)하였다. 삼요소(三要素) 이용율(利用率)과 수량(收量) 및 건물생산량(乾物生産量), 삼요소(三要素) 및 규산흡수량(珪酸吸收量)과의 아래와 같은 관계에서 무기양분(無機養分)의 생산(生産)에 기여하는 양상(樣相)이 시용(施用)한 P가 1차적(次的)으로 Si흡수(吸收)를 이차적(二次的)으로 Si가 N흡수(吸收)를 조장(助長)하여 기여하는 P형(型)과 시용(施用)한 K가 P흡수(吸收)를, 이차적(二次的)으로 P가 N흡수(吸收)를 조장(助長)하여 기여하는 K형(型)으로 연도별(年度別) 주도형(主導型)을 구분(區分)할 수 있었다. 1. 질소(窒素)는 전포장수(全圃場數)의 4%, 인산(燐酸)은 48%, 가리(加里)는 38%가 0 또는 부(負)의 이용율(利用率)을 보였으며 이용율(利用率)의 발현빈도(發現頻度) 백분분포(百分分布)가 N는 30 내지 40에서 최고빈도(最高頻度)를 보이는 정규분포(正規分布)에 가깝게, P와 K는 0 이하(以下)에서 최고빈도(最高頻度)를 갖고 점차 감소하는 편의 분포(分布)를 갖는다. 2. 삼요소(三要素) 이용율(利用率) (0 이상(以上)만)은 67년(年)에 N는 33(10kg 시비(施肥) 수준이상(水準以上)) P는 27, K는 40이고 68년(年)엔 40, 20, 46%이고 부(負)의 이용율(利用率)을 0으로한 2개년(個年) 평균(平均)은33(8kg 이상(以上)) 13, 27이었다. 3. 이용율(利用率)의 표준편차(漂準偏差)는 P와 K에서 이용율(利用率)보다 크고 P이용율(利用率)의 변이(變異)가 가장 크다. 4. 이용율(利用率)과 수량(收量) 또는 건물생산량(乾物生産量)과의 유의상관(有意相關) 출현빈도(出現頻度)는 N>K>P의 순(順)이며 10kg 수준의 N이용율(利用率)은 67년(年)엔 P이용율(利用率)과만 63년(年)엔 K이용율(利用率)과만 유의상관(有意相關)을 갖는다. 5. P이용율(利用率)은 그것이 높고 K이용율(利用率)이 낮았던 67년(年)에만, 그리고 K이용율(利用率)은 그와 반대였던 68년(年)에만 모든 처리구의 건물생산량(乾物生産量)과 유의상관(有意相關)을 보이고, 유의상관(有意相關)이 없는 해에는 무비구(無肥區) 및 결비구(缺肥區)區에서 부상관계수(負相顯係數)를 보이고 있다. 6. 이용율(利用率)과 수량(收量)과의 상관(相關)은 이용율(利用率)과 건물생산량(乾物生産量)과의 상관(相關)과 경향은 유사하나 유의성이 적어삼요소(三要素) 영양(營養)은 건물생산(乾物生産)에서 잘 표현된다. 7. N이용율(利用率)은 N시비구(施肥區)의 N흡수량(吸收量)과 많은 경우 유의상관(有意相關)을, 무(無)N구(區)의 흡수량(吸收量)과는 유의부상관(有意負相關)을 보이며, N시비구(施肥區)의 P, K또는 Si흡수량(吸收量)과도 여러 경우 유의상관(有意相關)을 보였다. 8. P이용율(利用率)은 그것이 높았던 67년(年)만 모든 처리구에서 Si흡수량(吸收量)과, 그리고 무(無)P구(區)를 제(除)한 모든 처리구의 N 흡수량(吸收量)과 유의상관(有意相關)을 보여 P는 일차적(一次的)으로 Si흡수(吸收)를 돕고 이차적(二次的)으로 Si흡수(吸收)가 N흡수(吸收)를 조장(助長)함을 나타낸다. P이용율(利用率)은 N시비구(施肥區)의 P흡수량(吸收量)과 K흡수량(吸收量)과도 많은 경우 유의상관(有意相關)을 보였다. 9. K이용율(利用率)은 그것이 컸던 68년(年)에 모든 처리구의 P흡수량(吸收量)과 무(無)N구(區)을 제(除)한 모든 처리구의 N흡수량(吸收量)과 그리고 무(無)P구(區)를 제(除)한 모든 처리구의 K흡수량(吸收量)과 유의상관(有意相關)을 보이며 무(無)K구(區)의 K흡수량(吸收量)과는 부상관(負相關)이고 K이용율(利用率)이 적었던 67년(年)에는 무비구(無肥區)나 결비구(缺肥區)의 P흡수량(吸收量)과 유의성(有意性)은 없으나 부상관(負相關)이었다. K이용율(利用率)은 N나 P와는 달리 K흡수량(吸收量)과 보다 수량(收量)이나 건물생산량(乾物生産量)과의 상관(相關)이 더 크며 K이용율(利用率)이 컸던 해에만 Si흡수량(吸收量)과 무(無)N구(區)와 최고시비구(最高施肥區)에서 유의상관(有意相關)을 갖고 무(無)K구(區)에서 유의부상관(有意負相關)을 보였다. 이로서 K는 일차적(一次的)으로 P흡수(吸收)를 돕고 이차적(二次的)으로 P가 N흡수(吸收)를 도와서 생산(生産)에 기여하는 것 같다. 10. N이용율(利用率)과 수량(收量)이나 건물생산량(乾物生産量)과의 상관(相關)이 무(無)P구(區)에서 보다 무(無)K구(區)가 높고 무(無)K구(區)보다 시비구(施肥區)에서 높으며 이러한 경향은 N이용율(利用率)과 N흡수량(吸收量)사이에서도 동일(同一)하였다. 이 사실과, K이용율(利用率)과 건물생산량(乾物生産量)과의 관계는 P가 N흡수(吸收)를 돕고 N나 P가 부족(不足)할 때에는 K가 N흡수(吸收)를 경쟁적으로 억제하여 생산(生産)을 저하(低下)시키는 것을 나타낸다. 11. 삼요소(三要素) 이용율(利用率)은 67년(年)에는 무(無)P구(區)의 상대건물생산량(相對乾物生産量)과, 68년(年)에는 무(無)K구(區)의 상대수량(相對收量)과 유의상관(有意相關)을 갖는다. 이는 P가 분얼 즉 영양생장단계에, K가 곡실형성 즉 생식 생장단계에 더 작용(作用)하였음을 나타내고 있다. 12. 삼요소(三要素) 이용율(利用率)과 결비구(缺肥區)의 상대생산량(相對生産量)이나 무비구(無肥區)의 결비구(缺肥區)에 대(對)한 상대생산량(相對生産量)과의 상관(相關)에서 어느 경우에도 N가 수도생산(水稻生産)에 가장 큰 역할(役割)을 하고 있음을 보였다. 13. 이상의 결과에서 40 내지 50%의 포장(圃場)은 P와 K를 시비(施肥)하지 아니해도 되며 시비량(施肥量)도 연도(年度)및 포장에 따라 변이(變異)가 커야 할 것이며 특히 P에서 그러하다.

  • PDF

Almond의 종간접목(種間接木)에 관(關)한 연구(硏究) (Studies on the Interspecific Grafting of Almond)

  • 박교수
    • 한국산림과학회지
    • /
    • 제41권1호
    • /
    • pp.7-18
    • /
    • 1979
  • 본(本) 연구(硏究)는 유지자원(油脂資源)과 고급식물성(高級植物性) 및 단백질식품자원(蛋白質食品資源)으로서 중요시(重要視)되고 있고 특히 ice cream, candy roast, chocolate, 제과(製菓)및 화장품안료(花粧品顔料), 조미료등(調味料等)에 널리 쓰이고 있는 Almond의 산지개발(山地開發)로 식품자원(食品資源)을 충족(充足)하고자 우선 이들 clone 육성(育成)을 위(爲)한 접목친화력(接木親和力)이 강한 태목(台木)과 실용적(實用的)인 접목기술(接木技術)을 개발보급(開發普及)하고자 온실내(溫室內)에 온도(溫度)와 습도(濕度)를 완전자동조절(完全自動調節)할 수 있는 온실(溫室)을 만들어서 절접방법(切接方法)을 택(擇)한다음 태목용수종(台木用樹種)은 Prunus persica와 Prunus mandshurica를 사용(使用)하고 접수(接穗)는 Hall's hardy Almond, Nonpareil, Kapareil 및 Thompson을 사용(使用)하여 종간접목(種間接木)을 실시(實施)해서 태목별(台木別) 및 품종별(品種別)로 접목활착율(接木活着率)을 비교분석(比較分析)하여 다음과 같은 결과(結果)를 얻었다. 1. Almond는 Prunus persica가 Prunus mandshurica에 비(比)하여 보다 접목친화력(接木親和力)이 강했다. 2. Hall's hardy Almond를 P. persica와 P. mandshurica태목(台木)에 종간접목(種間接木)을 실시(實施)한바 P. persica는 95.33%, P. mandshurica는 92.66%의 접목활착율(接木活着率)을 얻었고 이들 태목간(台木間)에는 유의성(有意性)이 없었다. 3. Sweet Almond 품종(品種)들은 Prunus persica 태목(台木)이 Prunus persica 태목(台木)에 접목(接木)하는 것보다 접목친화력(接木親和力)이 강하고 이들 2개수종(個樹種)을 접목(接木)할 경우 태목간(台木間)에는 유의성(有意性)이 없었다. 4. Prunus persica 태목(台木)에 접목(接木)된 종간접목묘(種間接木苗)는 Thompson 92.66%, Nonpareil 90.66%, Kapareil 89.33% 순위(順位)의 접목활착율(接木活着率)을 보였다. 5. Prunus mandshurica 태목(台木)에 접목(接木)한 것은 Thompson, 87.66%, Nonpareil 87.00% 그리고 Kapareil 85% 순위(順位)의 접목활착율(接木活着率)을 보였다. 6. 이들 2개수종(個樹種)의 태목(台木)과 3개품종(個品種)의 접수(接穗)와의 상호작용(相互作用)을 분산분석(分散分析)한 결과(結果)는 유의성(有意性)이 없었다. 7. Hall's hardy Almond를 접수(接穗)로하여 Prunus persica를 태목(台木)으로 한 종간접목묘(種間接木苗)의 생장량(生長量)은 평균묘고(平均苗高) 161cm, 근원경(根元莖) 12.3mm 그리고 근장(根長) 21.5cm의 우량묘(優良苗)를 얻을수 있었다. 8. Prunus mandshurica를 태목(台木)으로 한 종간접목묘(種間接木苗)는 Prunus persica보다 6~8일(日) 빨리 접수(接穗)의 동아(冬芽)로부터 개엽(開葉)이 빨르고 또한 본엽(本葉)의 색(色)이 보다 농녹색(濃綠色)을 띠었다. 9. 온수(溫水)보일러와 미스트스프레이에 의한 자동조절장치(自動調節裝置)는 매우 편리하고 접목활착(接木活着)에 미치는 환경요인조정(環境要因調整)에 큰 효과(効果)가 있었다. 10. Almond는 온실내(溫室內)에서 일년생태목(一年生台木)에 절접법(切接法)을 활용(活用)하면 매우 손쉽게 다량(多量)의 우수한 접목묘(接木苗)를 생산(生産)하는데 효과적(効果的)이었다.

  • PDF

Quinclorac과 Bensulfuron-methyl의 혼합처리(混合處理)에서 벼의 생장(生長)에 대한 제초제간(除草劑間) 길항작용(拮抗作用) (Antagonistic Interaction between Quinclorac and Bensulfuron-methyl on Growth of the Rice Plants)

  • 권오연;권용웅
    • 한국잡초학회지
    • /
    • 제17권3호
    • /
    • pp.288-294
    • /
    • 1997
  • 본(本) 연구(硏究)는 논 제초제(除草劑)로서 근래(近來)에 합제화(合劑化)된 bensulfuron-methyl과 quinclorac, 두 제초제(除草劑) 성분(成分)이 약해면(藥害面)에서 벼의 생장(生長)에 미치는 상호작용효과(相互作用效果)를 밝히고자 수행하였다. Quinclorac은 0, 300, 600, 900g ai/ha수준, bensulfuron-methyl은 0, 25, 50, 100g ai/ha수준에서 조합(組合) 처리(處理) 하였으며, 벼는 추청벼 10, 35, 55일묘(日苗)를 공시(供試)하고 온실, 생장상 및 포장에서 실험하였다. 제초제간(除草劑間)의 상호작용성(相互作用性)은 Chisaka 및 Colby의 성적분석 방법을 이용하였으며, 그 결과는 다음과 같이 요약된다. 1. 벼 총건물중(總乾物重)을 10% 감소(減少)시키는 약량(藥量)은 quinclorac 단제처리의 경우 aj/ha, 유묘기(幼苗期)(파종후 20일 : 3.5엽기)에는 584.8g ai/ha, 분얼기(分蘖期)(파종후 65일 : 7엽기)에는 517.7g ai/ha로 벼의 생육기(生育期)에 따른 차이가 작았으나 bensulfuron-methyl 단제처리의 경우에는 유묘기에는 43.2g ai/ha, 분얼기에는 84.2g ai/ha으로 벼의 생육기에 따라 약제에 대한 내성(耐性)이 크게 달랐다. 2. Quinclorac과 bensulfuron-methyl을 벼의 유묘기(幼苗期)와 분얼기(分蘖期)에 혼합처리(混合處理)하였을 경우 총(總) 건물중(乾物重)을 10% 감소시키는 등(等) 효과선(效果線)을 얻은결과 상호작용지수(相互作用指數)(antagonism index)는 -0.63 과 -0.67로서 길항작용효과(拮抗作用效果)가 인정되었으며, quinclorac과 bensulfuron-methyl간에 최대의 길항효과(拮抗效果)를 나타낸 혼합비율(混合比率)은 유묘기에는 796.3 : 100g ai/ha, 분얼기에는 760.3 : 100g ai/ha로서 유묘기에 길항효과가 컸다. 3. 지상부(地上部) 생장에 대한 길항작용효과(拮抗作用效果)에 있어서 유묘기에는 지상부(地上部) 건물중(乾物重) 감소(減少)가 quinclorac 600g ai/ha에 bensu1furon-methyl 100g ai/ha를 혼합처리(混合處理)한 구에서 quinclorac 600g a.i/ha과 bensulfuron-methyl 100g a.i/ha의 각 단제처리 구보다 작았으며, 상호작용지수(相互作用指數)(antagonism index)는 -0.79이었다. 분얼기(分蘖期)때는 quinclorac 600g ai/ha에 bensu1furon-methyl 25g ai/ha를 혼합처리한 구가 무처리구(無處理區)에 비해 지상부 건물중이 증가되었으며, 상호작용지수(antagonism index)는 -1.33 이었다. 4. Quinclorac의 auxin적 활성(活性)에 의해 발생되는 통엽(筒葉)은 유묘기(幼苗期)처리시에는 quinclorac 600g ai/ha단제 처리구에서 개체당 평균 0.22개의 분얼(分蘖)(1.87%) 에서 발생하였으며, quinclorac 900g a.i/ha의 단제처리구에서는 개체당 5.44개의 분얼(分蘖)(47.10%)에서 발생하였다. 또한 분얼기(分蘖期) 처리시에 는 quinclorac 900g ai/ha의 단제처리구에서 개체당 평균 0.22개의 분얼(2.2%)에서 통엽(筒葉)이 발생하였다. 5. Quinclorac과 bensulfuron-methyl을 혼합처리(混合處理)하였을 때는 bensulfuron-methyl의 처리량(處理量)이 증가(增加)할수록 통엽(筒葉)발생이 급격히 감소(減少)하여 유묘기에 quinclorac 600g ai/ha과 bensulfuronmethyl 100g ai/ha를 혼합처리한 구에서는 통엽발생(筒葉發生)이 없었으며, quinclorac 900g a.i/ha과 bensulfuron-methyl 100g a.i/ha을 혼합처리한 구에서는 개체당 1.78개의 분얼(18.45%)에서만 통엽(筒葉)이 발생하였다. 그리고 분얼기 에서는 길항효과(拮抗效果)가 잎의 발육면(發育面)에서도 충분히 나타나 모든 혼합처리에서 통엽(筒葉)이 발생되지 않았다. 6. 약제처리효과(藥劑處理效果)의 온도반응(溫度反應)에서는 quinclorac 600g ai/ha 단제처리구(單劑處理區)에서는 온도(溫度)가 낮을수록, bensulfuron-methyl 102g aijha 단제처리구에서는 온도(溫度)가 높을수록 총(總) 건물중(乾物重) 감소(減少)가 심해졌으며, 이들의 혼합처리(混合處理區)에 있어서는 온도(溫度)가 낮을수록 총(總) 건물중(乾物重) 감소(減少)가 작아졌다. 또한 quinclorac 600g a.i/ha과 bensulfron-methyl 102g a.i/ha을 혼합처리하였을 때 저온조건(低溫條件)에서의 quinclorac 600g ai/ha 단제처리나, 고온조건(高溫條件)에서 bensulfuron-methyl 102g ai/ha 단제처리보다 총(總) 건물중(乾物重) 감소(減少)가 적었다. 온도(溫度)에 따른 상호작용성(相互作用性) 변화(變化)는 총(總) 건물중(乾物重)의 실측치(實測値)와 기대치(期待値)의 차이가 저온조건(低溫條件)에서 -32.44, 적온조건(適溫條件)에서 -21.92, 고온조건(高溫條件)에서 -21.53으로서 온도(溫度)가 낮아질수록 길항효과(括抗效果)가 컸다.

  • PDF

항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성 (Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil)

  • 임상선;최우정;김한용;정재운;윤광식
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.853-860
    • /
    • 2012
  • 비산재 혼합에 의한 $CH_4$$CO_2$ 방출 저감 가능성을 조사하기 위해 질소 ($(NH_4)_2SO_4$) 무처리구와 처리구를 두고 비산재를 0, 5, 10% 수준으로 혼합한 후 토양 수분 변동조건 (습윤기간, 전이기간, 건조기간)에서 60일간 실험실내 항온배양실험을 통해 $CH_4$$CO_2$ flux를 분석하였다. 전체 항온배양기간 중 평균 $CH_4$ flux는 $0.59{\sim}1.68mg\;CH_4\;m^{-2}day^{-1}$의 범위였으며, 질소 무처리구에 비해 처리구에서 flux가 낮았는데, 이는 질소 처리시 함께 시용된 $SO_4^{2-}$의 전자수용체 기능에 의해 $CH_4$ 생성이 억제되었기 때문으로 판단되었다. 질소 무처리구와 처리구에서 비산재 10% 처리에 의해 $CH_4$ flux가 각각 37.5%와 33.0% 감소하였는데, 이는 물리적인 측면에서 미립질 (실트 함량 75.4%)인 비산재 시용에 의해 통기성 대공극량이 감소되어 $CH_4$ 확산 속도가 저감되었기 때문으로 판단되었다. 또한, 생화학적 측면에서는 비산재의 $CO_2$ 흡착능에 의해 $CH_4$ 생성의 주요 기작 중 하나인 이산화탄소 환원에 필요한 $CO_2$ 공급이 억제된 것도 원인 일 수 있다. 한편, 전체 항온 배양 기간의 평균 $CO_2$ flux ($0.64{\sim}0.90g\;CO_2\;m^{-2}day^{-1}$) 역시 질소 무처리구가 질소 처리구보다 높았다. 이는 일반적으로 질소 시비에 의해 토양 호흡량이 증가한다는 기존의 연구결과와는 상이한데, 본 연구에서 질소 처리에 의해 활성화된 미생물에 의해 $CO_2$ flux 최초 측정 시점 (처리 후 2일째) 이전에 이미 상당한 양의 $CO_2$가 이미 방출되어 실측 flux에 반영되지 못했기 때문으로 설명이 가능했다. $CH_4$과 유사하게 $CO_2$ flux도 비산재무처리구에 비해 비산재 10% 처리구에서 약 20% 감소하였는데, 이는 비산재의 원소 구성 중 Ca과 Mg과 토양수내 탄산이온의 탄산염 ($CaCO_3$$MgCO_3$)화 반응에 의한 $CO_2$ 침전 때문이다. 이상과 같은 비산재 처리에 의한 $CH_4$$CO_2$ flux 감소에 의해 지구온난화지수 역시 비산재 10% 처리구에서 약 20% 감소하였다. 따라서, 비산재는 논 토양에서 $CH_4$$CO_2$ 방출 저감에 효과가 있는 것으로 나타났으며, 실재 벼 재배 포장에서의 실험을 통한 추가적인 검증이 필요하다.

다양한 종류의 피트모스와 펄라이트 혼합에 따른 물리·화학성 변화와 계절별 육묘를 위한 상토 선발 (Physicochemical Properties of Various Blends of Peatmoss and Perlite and the Selection of Rooting Media for Different Growing Seasons)

  • 심창용;김창현;박인숙;최종명
    • 원예과학기술지
    • /
    • 제34권6호
    • /
    • pp.886-897
    • /
    • 2016
  • 공정육묘장들이 계절별 기상환경에 적합하도록 혼합상토의 조성을 변화시키고 있다. 본 연구는 계절별(하절기, 동절기, 봄 가을) 육묘에 적합한 상토를 선발하기 위해 수행되었다. 실험을 위해 다양한 국가에서 수입된 8종류의 피트모스와 입경이 다른 4종류의 펄라이트를 수집한 후 비율을 피트모스 7: 펄라이트3(v/v)으로 고정시킨 32종류의 상토를 만들었다. 이 후 공극률, 기상률 및 액상률의 삼상분포, 그리고 pH, EC 및 무기물 함량 등 화학성을 분석한 후 6종류 상토를 선발하였다. 선발 된 상토를 대상을 추가로 쉽게 이용할 수 있는 수분량(EAW)과 완충수분(BW), cation exchange capacity(CEC) 그리고 각종 화학성을 분석하여 기비 혼합을 위한 판단기준으로 삼았다. 피트모스와 펄라이트를 혼합한 상토는 공극률 64.7-96.0%, 용기용 수량 42.9-90.1%, 그리고 기상률이 1.3-27.8%의 범위로 측정되었고, 혼합되는 피트모스와 펄라이트 종류에 따라 물리성의 차이가 컸다. 피트모스의 pH와 EC가 각각 2.96-3.81 및 $0.08-0.47dS{\cdot}m^{-1}$로 분석되었지만 펄라이트를 혼합한 후 pH가 상승하고 EC가 낮아졌다. 하절기용으로 선발한 Blonde Golden peatmoss(BG) + 펄라이트(입경 1mm 이하) 1호(PE1)와 Latagro 10mm 이하(L1) + 펄라이트(1-2mm) 2호(PE2) 상토는 공극률, 용기용수량 및 기상률이 각각 89.8-90.9, 80.8-81.3 및 9.0-9.7%였다. 동절기용으로 선발한 Sfagnumi Turvas(ST) + PE2와 Laragro 20-40mm(L3) + PE2 상토는 이들 세 종류 항목이 각각 79.9-86.7, 60.4-74.9 및 11.8-19.6% 그리고 봄 가을용인 BG + 펄라이트 2-5mm(PE3)와 Orange peatmoss(O) + PE3이 각각 85.2-87.3, 77.9 및 7.4-9.4%이었다. EAW는 봄 가을과 하절기용이 각각 24.2-24.9%, 22.0-28.6%의 범위였지만 동절기용은 각각 18.0-21.8%로 측정되었으며, BW는 계절별로 선발한 상토에 따른 차이가 뚜렷하지 않았다. 선발된 6종류 혼합상토의 pH는 3.11-3.97, EC는 $0.06-0.26dS{\cdot}m^{-1}$, 그리고 양이온치환용량은 $97-119meq{\cdot}100g^{-1}$ 범위에 포함되었다.