• Title/Summary/Keyword: Production optimization

Search Result 1,621, Processing Time 0.035 seconds

Effect of growth regulators on In Vitro mass propagation of Haworthia maughanii (생장조절제가 하월시아 만상(Haworthia maughanii)의 기내 대량증식에 미치는 영향)

  • Kim, Youn Hee;Kim, Hye Hyeong;Lee, Gee Young;Lee, Jae Hong;Jung, Jae Hong;Delgado-Sanchez, Pablo;Lee, Sang Deok
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.369-374
    • /
    • 2018
  • The purpose of this study was to investigate the suitable parts for callus induction and optimal concentrations of growth regulators contained in the medium affecting shoot and rooting for the in vitro mass production of Haworthia maughanii. To determine suitable parts of the plant for callus induction, the leaves, flower bloom and flower stalks were cultured in MS medium at different concentrations of $0{\sim}2mgL^{-1}$ NAA and $0{\sim}2mgL^{-1}$ TDZ, respectively. All of the parts showed 100% callus formation rate at $NAA\;1mgL^{-1}$ and $TDZ\;1mgL^{-1}$ treatment, $NAA\;2mgL^{-1}$ and $TDZ\;2mgL^{-1}$ treatment and NAA 1 to $2mgL^{-1}$, respectively. While the rate of callus formation was high in all parts, the leaves were the most efficient to obtain most culture parts. $NAA\;0.1mg\;L^{-1}$ and $BA\;0.1mg\;L^{-1}$ treatments were the most effective in shoot formation with 22.0 shoots. In addition, multiple shoot propagation showed 16.3 shoots, the highest, with $NAA\;0.1mg\;L^{-1}$ and $BA\;0.1mg\;L^{-1}$ treatments. These results led us to speculate that the optimization of culture conditions was responsible for the mass propagation for in vitro cultures of Haworthia maughanii.

Isolation of the Protease-producing Yeast Pichia anomala CO-1 and Characterization of Its Extracellular Neutral Protease (세포 외 중성 단백질분해효소를 생산하는 Pichia anomala CO-1의 분리 동정 및 효소 특성)

  • Kim, Ji Yeon
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1126-1135
    • /
    • 2019
  • From a sample of bamboo byproduct, the protease-producing yeast strain CO-1 was newly isolated. Strain CO-1 is spherical to ovoid in shape and measures $3.1-4.0{\times}3.8-4.4{\mu}m$. For the growth of strain CO-1, the optimal temperature and initial pH were $30^{\circ}C$ and 4.0, respectively. The strain was able to grow in 0.0-15.0%(w/v) NaCl and 0.0-9.0%(v/v) ethanol. Based on a phylogenetic analysis of its 18S rDNA sequences, strain CO-1 was identified as Pichia anomala. The extracellular protease produced by P. anomala CO-1 was partially purified by ammonium sulfate precipitation, which resulted in a 14.6-fold purification and a yield of 7.2%. The molecular mass of the protease was recorded as approximately 30 kDa via zymogram. The protease activity reached its maximum when 1.0%(w/v) CMC was used as the carbon source, 1.0%(w/v) yeast extract was used as the nitrogen source, and 0.3%(w/v) $MnSO_4$ was used as the mineral source. The protease revealed the highest activity at pH 7.0 and $30^{\circ}C$. This enzyme maintained more than 75% of its stability at a pH range of 4.0-10.0. After heating at $65^{\circ}C$ for 1 hr, the neutral protease registered at 60% of its original activity. The protease production coincided with growth and attained a maximal level during the post-exponential phase.

Exergy Analysis of Cryogenic Air Separation Unit for Oxy-fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 엑서지 분석)

  • Choi, Hyeung-chul;Moon, Hung-man;Cho, Jung-ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • In order to solve the global warming and reduce greenhouse gas emissions, $CO_2$ capture technology was developed by applying oxy-fuel combustion. But there has been such a problem that its economic efficiency is low due to the high price of oxygen gases. ASU is known to be most suitable method to produce large quantity of oxygen, to reduce the oxygen production cost, the efficiency of ASU need to be improved. To improve the efficiency of ASU, exergy analysis can be used. The exergy analysis provides the information of used energy in the process, the location and size of exergy destruction. In this study, the exergy analysis was used for process developing and optimization of large scale ASU. The process simulation of ASU was conducted, the results were used to calculate the exergy. As a result, to reduce the exergy loss in the cold box of ASU, a lower operating pressure process was suggested. It was confirmed the importance of heat leak and heat loss reduction of cold box. Also, the unit process of ASU which requires thermal integration was confirmed.

Optimization of the salt content in fish surimi ink for food 3D Printing (식염 함량에 따른 식품 3D 프린팅용 연육 잉크의 적합성 조사)

  • Lee, Chae-Hyeon;Kim, Myeong-Eun;Yang, Yujia;Son, Yu-Jin;Lee, Ji-A;Lyu, Eun-Soon;Jung, Un Ju;Kang, Beodeul;Lee, Sang Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.29-33
    • /
    • 2021
  • The fish cake industry is attempting to overcome the standstill by adopting new production technologies, such as 3D printing technology. The characteristics of food 3D printing ink, including viscosity, hardness, and adhesiveness, are essential in food 3D printing technology. Therefore, in this study, the effect of salt on the gelation of surimi 3D ink and its texture for 3D printing were examined. After adding salt (1-4%) to fish meat, the viscosity and adhesiveness of fish meat was found to be increased by gelation. Among the fish surimi with various salt contents, surimi with 3% salt showed the most suitable characteristics, including viscosity, adhesiveness, and hardness, for a whirlwind and λ 3D printing model. Scanning electron microscopy showed that the addition of 3% salt resulted in the most adhesive surimi and less porous spaces. Overall, our study found that 3% salt would be suitable for 3D printing ink using fish surimi.

Biotransformation of Ginsenoside Rd from Red Ginseng Saponin using Commercial β-glucanase (상업용 β-glucanase를 이용한 홍삼유래 사포닌으로부터 Ginsnoside Rd 의 생물 전환)

  • Kang, Hye Jung;Lee, Jong Woo;Park, Tae Woo;Park, Hye Yoon;Park, Junseong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.349-360
    • /
    • 2020
  • Bio-conversion manufacturing technology has been developed to produce ginsenoside Rd which is increasingly in demand as a cosmetic material due to various possibilities related to improving skin function. In order to convert ginsenoside Rb1 which is contained in red ginseng saponin (RGS) into Rd, several commercial enzymes were tested. Viscoflow MG was found to be the most efficient. In order to optimize the conversion of RGS to ginsenoside Rd by enzymatic transition was carried out using response surface methodology (RSM) based on Box-Behnken design (BBD). The main independent variables were RGS concentration, enzyme concentration, and reaction time. Conversion of ginsenoside Rd was performed under 17 conditions selected according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rd ranged from 0.3113 g/L to 0.5277 g/L, and the highest production volume was obtained under condition of reacting 2% RGS and 1.25% enzyme for 13.5 hours. Consequently, RGS concentration, enzyme concentration which is 0.05 less than p-value and among the interactions between the independent variables, the interaction between enzyme concentration and reaction time was confirmed to be the most influential.

Prediction of Storm Surge Height Using Synthesized Typhoons and Artificial Intelligence (합성태풍과 인공지능을 활용한 폭풍해일고 예측)

  • Eum, Ho-Sik;Park, Jong-Jib;Jeong, Kwang-Young;Park, Young-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.892-903
    • /
    • 2020
  • The rapid and accurate prediction of storm-surge height during typhoon attacks is essential in responding to coastal disasters. Most methods used for predicting typhoon data are based on numerical modeling, but numerical modeling takes significant computing resources and time. Recently, various studies on the expeditious production of predictive data based on artificial intelligence have been conducted, and in this study, artificial intelligence-based storm-surge height prediction was performed. Several learning data were needed for artificial intelligence training. Because the number of previous typhoons was limited, many synthesized typhoons were created using the tropical cyclone risk model, and the storm-surge height was also generated using the storm surge model. The comparison of the storm-surge height predicted using artificial intelligence with the actual typhoon, showed that the root-mean-square error was 0.09 ~ 0.30 m, the correlation coefficient was 0.65 ~ 0.94, and the absolute relative error of the maximum height was 1.0 ~ 52.5%. Although errors appeared to be somewhat large at certain typhoons and points, future studies are expected to improve accuracy through learning-data optimization.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

Current Trend of EV (Electric Vehicle) Waste Battery Diagnosis and Dismantling Technologies and a Suggestion for Future R&D Strategy with Environmental Friendliness (전기차 폐배터리 진단/해체 기술 동향 및 향후 친환경적 개발 전략)

  • Byun, Chaeeun;Seo, Jihyun;Lee, Min kyoung;Keiko, Yamada;Lee, Sang-hun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the increasing demand for electric vehicles (EVs), appropriate management of their waste batteries is required urgently for scrapped vehicles or for addressing battery aging. With respect to technological developments, data-driven diagnosis of waste EV batteries and management technologies have drawn increasing attention. Moreover, robot-based automatic dismantling technologies, which are seemingly interesting, require industrial verifications and linkages with future battery-related database systems. Among these, it is critical to develop and disseminate various advanced battery diagnosis and assessment techniques to improve the efficiency and safety/environment of the recirculation of waste batteries. Incorporation of lithium-related chemical substances in the public pollutant release and transfer register (PRTR) database as well as in-depth risk assessment of gas emissions in waste EV battery combustion and their relevant fire safety are some of the necessary steps. Further research and development thus are needed for optimizing the lifecycle management of waste batteries from various aspects related to data-based diagnosis/classification/disassembly processes as well as reuse/recycling and final disposal. The idea here is that the data should contribute to clean design and manufacturing to reduce the environmental burden and facilitate reuse/recycling in future production of EV batteries. Such optimization should also consider the future technological and market trends.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

Generation of single stranded DNA with selective affinity to bovine spermatozoa

  • Vinod, Sivadasan Pathiyil;Vignesh, Rajamani;Priyanka, Mani;Tirumurugaan, Krishnaswamy Gopalan;Sivaselvam, Salem Nagalingam;Raj, Gopal Dhinakar
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1579-1589
    • /
    • 2021
  • Objective: This study was conducted to generate single stranded DNA oligonucleotides with selective affinity to bovine spermatozoa, assess its binding potential and explore its potential utility in trapping spermatozoa from suspensions. Methods: A combinatorial library of 94 mer long oligonucleotide was used for systematic evolution of ligands by exponential enrichment (SELEX) with bovine spermatozoa. The amplicons from sixth and seventh rounds of SELEX were sequenced, and the reads were clustered employing cluster database at high identity with tolerance (CD-HIT) and FASTAptamer. The enriched nucleotides were predicted for secondary structures by Mfold, motifs by Multiple Em for Motif Elicitation and 5' labelled with biotin/6-FAM to determine the binding potential and binding pattern. Results: We generated 14.1 and 17.7 million reads from sixth and seventh rounds of SELEX respectively to bovine spermatozoa. The CD-HIT clustered 78,098 and 21,196 reads in the top ten clusters and FASTAptamer identified 2,195 and 4,405 unique sequences in the top three clusters from the sixth and seventh rounds, respectively. The identified oligonucleotides formed secondary structures with delta G values between -1.17 to -26.18 kcal/mol indicating varied stability. Confocal imaging with the oligonucleotides from the seventh round revealed different patterns of binding to bovine spermatozoa (fluorescence of the whole head, spot of fluorescence in head and mid- piece and tail). Use of a 5'-biotin tagged oligonucleotide from the sixth round at 100 pmol with 4×106 spermatozoa could trap almost 80% from the suspension. Conclusion: The binding patterns and ability of the identified oligonucleotides confirms successful optimization of the SELEX process and generation of aptamers to bovine spermatozoa. These oligonucleotides provide a quick approach for selective capture of spermatozoa from complex samples. Future SELEX rounds with X- or Y- enriched sperm suspension will be used to generate oligonucleotides that bind to spermatozoa of a specific sex type.