• Title/Summary/Keyword: Production Validation & Audit

Search Result 3, Processing Time 0.017 seconds

A Study on Quality Management System Specification and Airworthiness Certification Application in Defense Aerospace Industry (품질경영시스템 규격 및 감항인증 적용에 관한 연구)

  • Kim, Chang-Young;An, Young-Gab
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.423-432
    • /
    • 2013
  • Purpose: A Study on the application of quality management system specification to production validation and audit in military airworthiness certification. Methods: Aircraft quality management system specification for quality assurance and production validation and audit requirements were examined to verify. Also, the system for domestic and foreign production certification were investigated. Results: Production validation and audit criteria for military aircraft by applying methods suggested Aircraft Certifications Systems Evaluation Program(ACSEP). ACSEP evaluation of the items, some items were complementary and not applied. Conclusion: As a way to ensure the safety of aircraft, confirm the correction of Production validation & audit criteria and rulemaking is necessary and how to manage for Critical Safety Item(CSI) is a need to improve.

Good manufacturing practice of radiopharmaceuticals in Korea

  • Oh, Seung Jun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.98-103
    • /
    • 2015
  • Good manufacturing Practice (GMP) regulation for diagnostic and therapeutic radiopharmaceuticals was prepared at 2014. The mandatory GMP regulation becomes effective on $1^{st}$, July 2015,with two years of grace periods. Korean radiopharmaceuticals GMP regulation was consisted of quality management, personnel, premise and facility, documentation, production, quality control and self-audit and they have a very similar structure to European Union and PIC/S GMP regulation. Here, we describe detailed description of GMP regulation each part and application to radiopharmaceuticals production. And we also compare Korea, Japan and USA radiopharmaceuticals GMP regulation. GMP is a method to maintain quality of radiopharmaceuticals in daily production and it must be embedded on the manufacturing operation and management.

Validation of a New Design of Tellurium Dioxide-Irradiated Target

  • Fllaoui, Aziz;Ghamad, Younes;Zoubir, Brahim;Ayaz, Zinel Abidine;Morabiti, Aissam El;Amayoud, Hafid;Chakir, El Mahjoub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1273-1279
    • /
    • 2016
  • Production of iodine-131 by neutron activation of tellurium in tellurium dioxide ($TeO_2$) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gaswelding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ${\leq}10^{-4}mbr.L/s$, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to $600^{\circ}C$ with the appearance of deformations on lids beyond $450^{\circ}C$. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from4 hours of irradiation at a power level of 0.5MWup to 35 hours (7 h/d for 5 days a week) at 1.5MW. The results showthat the irradiated targets are tight because no iodine-131 was released in the atmosphere of the reactor building and in the reactor cooling water of the primary circuit.