• Title/Summary/Keyword: Production Line

Search Result 2,640, Processing Time 0.026 seconds

Molding Analysis for the Production of Large Sun Visors in Vehicles (차량용 대형 선바이저 생산을 위한 성형해석)

  • Park, Jong-Nam;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.610-615
    • /
    • 2016
  • Diverse accessories are used in automobiles, such as navigation systems, front and rear cameras, spoilers, and sun visors. Sun visors block sunlight so that drivers can drive safely with a better view, and they are used in many automobile designs. However, when large plastic products are manufactured using injection molding, there are many difficulties that develop, like weld lines, short shots, flow marks, imperfections, and distortion. In this study, a CAE simulation was conducted based on previous results to predict potential problems in the injection molding of large products. The flow characteristics up to complete charge for the melting resins were captured using a computer-aided engineering simulation. The temperature departure on the front part of a flow was about $10^{\circ}C$ and very stable. The practical ejecting time of the cold runner was about 70 seconds in the simulation. Finally, the capability of a suitable injection machine was calculated and recommended by prediction of the injection pressure and the die clamping force.

Potential Role of Ursodeoxycholic Acid in Suppression of Nuclear Factor Kappa B in Microglial Cell Line (BV-2)

  • Joo, Seong-Soo;Won, Tae-Joan;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.954-960
    • /
    • 2004
  • Expression of the NF-$textsc{k}$B-dependent genes responsible for inflammation, such as TNF-$\alpha$, IL-1$\beta$, and nitric oxide synthase (NOS), contributes to chronic inflammation which is a major cause of neurodegenerative diseases (i.e. Alzheimer's disease). Although NF-$textsc{k}$B plays a biphasic role in different cells like neurons and microglia, controlling the activation of NF-$textsc{k}$B is important for its negative feedback in either activation or inactivation. In this study, we found that ursodeoxycholic acid (UDCA) inhibited I$textsc{k}$B$\alpha$ degradation to block expression of the NF-$textsc{k}$B-dependent genes in microglia when activated by $\beta$-amyloid peptide (A$\beta$). We also showed that when microglia is activated by $A\beta$42, the expression of A20 is suppressed. These findings place A20 in the category of ' protective ' genes, protecting cells from pro-inflammatory reper-toires induced in response to inflammatory stimuli in activated microglia via NF-$textsc{k}$B activation. In light of the gene and proteins for NF-$textsc{k}$B-dependent gene and inactivator for NF-$textsc{k}$B (I$textsc{k}$B$\alpha$), the observations now reported suggest that UDCA plays a role in supporting the attenuation of the production of pro-inflammatory cytokines and NO via inactivation of NF-$textsc{k}$B. Moreover, an NF-$textsc{k}$B inhibitor such as A20 can collaborate and at least enhance the anti-inflammatory effect in microglia, thus giving a potent benefit for the treatment of neurodegenerative diseases such as AD.uch as AD.

Molecular Mechanisms of Microglial Deactivation by $TGF-{\beta}-inducible$ Protein ${\beta}ig-h3$

  • Kim, Mi-Ok;Lee, Eun-Joo H.
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.101-105
    • /
    • 2005
  • [ ${\beta}ig-h3$ ] is a secretory protein that is induced by $TGF-{\beta}$ and implicated in various disease conditions including fibrosis. We have previously reported that ${\beta}ig-h3$ expression is implicated in astrocyte response to brain injury. In this study, we further investigated potential roles of ${\beta}ig-h3$ protein in the injured central nervous system (CNS). We specifically assessed whether the treatment of microglial cells with ${\beta}ig-h3$ can regulate microglial activity. Microglial cells are the prime effector cells in CNS immune and inflammatory responses. When activated, they produce a number of inflammatory mediators, which can promote neuronal injury. We prepared conditioned medium from the stable CHO cell line transfected with human ${\beta}ig-h3$ cDNA. We then examined the effects of the conditioned medium on the LPS- or $IFN-{\gamma}-mediated$ induction of proinflammatory molecules in microglial cells. Preincubation with the conditioned medium significantly attenuated LPS-mediated upregulation of $TNF-{\alpha},\;IL-1{\beta}$, iNOS and COX-2 mRNA expression in BV2 murine microglial cells. It also reduced $IFN-{\gamma}-mediated$ upregulation of $TNF-{\alpha}$ and COX-2 mRNA expression but not iNOS mRNA expression. Assays of nitric oxide release correlated with the mRNA data, which showed selective inhibition of LPS-mediated nitric oxide production. Although the regulatory mechanisms need to be further investigated, these results suggest that astrocyte-derived ${\beta}ig-h3$ may contribute to protection of the CNS from immune-mediated damage via controlling microglial inflammatory responses.

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

Induction of ER Stress-Mediated Apoptosis by ${\alpha}$-Lipoic Acid in A549 Cell Lines

  • Kim, Jong-In;Cho, Sung-Rae;Lee, Chang-Min;Park, Eok-Sung;Kim, Ki-Nyun;Kim, Hyung-Chul;Lee, Hae-Young
    • Journal of Chest Surgery
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Background: ${\alpha}$-Lipoic acid (${\alpha}$-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of ${\alpha}$-LA in a lung cancer cell line, A549. Materials and Methods: ${\alpha}$-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription.polymerase chain reaction analyses. Results: ${\alpha}$-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. ${\alpha}$-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by ${\alpha}$-LA, and the antioxidant N-acetyl-L-cysteine decreased the ${\alpha}$-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion: ${\alpha}$-LA induced ER stress-mediated apoptosis in A549 cells via ROS. ${\alpha}$-LA may therefore be clinically useful for treating lung cancer.

A Comparative Study on Virtual Try-on Systems using Body Measurement Input

  • Lim, Ho-Sun;Istook, Cynthia
    • The International Journal of Costume Culture
    • /
    • v.13 no.2
    • /
    • pp.118-129
    • /
    • 2010
  • Digital technology introduced into the clothing and fashion industry is evolving to digital virtual fashions and consumer-centered mass-customized production systems. Today the application of such 3D virtual try-on systems is being expanded gradually in the clothing industry. This study purposed to make virtual avatars and virtual garments using OptiTex and V-stitcher virtual software and compared the appearance of the virtual garments put on the virtual avatars. For this, we created virtual avatars and virtual garments using body measurements obtained from jive subjects of top jive body shapes, respectively, using $[TC]^2$ body scanner. According to the results of comparing the outcomes of the two different virtual software systems, virtual avatar II of V-Stitcher tended to have a more round and lifted hip and the waist line at a higher position. In addition, the body curves and shapes of a virtual avatar affect the appearance of virtual garments. This study applied the same body measurements to virtual avatars and the same pattern to virtual garments, but when different kinds of virtual software were used, the virtual avatars and virtual garments showed different appearance and fit. This result may mean that when customers buy apparel products using different kinds of virtual try-on systems, their evaluation of appearance can vary depending on the virtual try-on system. Therefore, research needs to be made actively for the development and use of linkage programs that can reflect actual body measurements between virtual software systems and 3D body scanning systems.

  • PDF

Inhibition of Major Histocompatibility Complex (MHC)-Restricted Presentation of Exogenous Antigen in Dendritic Cells by Korean Propolis Components

  • Han, Shin-Ha;Cho, Kyung-Hae;Lee, Seung-Jeong;Lee, Chong-Kil;Song, Young-Cheon;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.150-156
    • /
    • 2005
  • Background: Dendritic cells (DCs) playa critical role not only in the initiation of immune responses, but also in the induction of immune tolerance. In an effort to regulate immune responses through the modulation of antigen presenting cell (APC) function of DCs, we searched for and characterized APC function modulators from natural products. Methods: DCs were cultured in the presence of propolis components, WP and CP, and then examined for their ability to present exogenous antigen in association with major histocompatibility complexes (MHC). Results: WP and CP inhibited class I MHC-restricted presentation of exogenous antigen (cross-presentation) in a DC cell line, DC2.4 cells, and DCs generated from bone marrow cells with GM-CSF and IL-4. The inhibitory activity of WP and CP appeared to be due not only to inhibition of phagocytic activity of DCs, but also to suppression of expression of MHC molecules on DCs. We also examined the effects of WP and CP on T cells. Interestingly, WP and CP increased IL-2 production from T cells. Conclusion: These results demonstrate that WP and CP inhibit MHC-restricted presentation of exogenous antigen through down-regulation of phagocytic activity and suppression of expression of MHC molecules on DCs.

Immune Responses to Viral Infection (바이러스 감염에 대한 면역반응)

  • Hwang, Eung-Soo;Park, Chung-Gyu;Cha, Chang-Yong
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.73-80
    • /
    • 2004
  • Viruses are obligate intracellular parasites which cause infection by invading and replicating within cells. The immune system has mechanisms which can attack the virus in extracellular and intracellular phase of life cycle, and which involve both non-specific and specific effectors. The survival of viruses depends on the survival of their hosts, and therefore the immune system and viruses have evolved together. Immune responses to viral infection may be variable depending on the site of infection, the mechanism of cell-to-cell spread of virus, physiology of the host, host genetic variation, and environmental condition. Viral infection of cells directly stimulates the production of interferons and they induce antiviral state in the surrounding cells. Complement system is also involved in the elimination of viruses and establishes the first line of defence with other non-specific immunity. During the course of viral infection, antibody is most effective at an early stage, especially before the virus enters its target cells. The virus- specific cytotoxic T lymphocytes are the principal effector cells in clearing established viral infections. But many viruses have resistant mechanism to host immune responses in every step of viral infection to cells. Some viruses have immune evasion mechanism and establish latency or persistency indefinitely. Furthermore antibodies to some viruses can enhance the disease by the second infection. Immune responses to viral infection are very different from those to bacterial infection.

Production, Characterization, and Variable Region Analysis of Monoclonal Antibodies Specific for Hepatitis B Virus S Antigen (Hepatitis B Virus의 S항원에 특이적인 단세포군 항체 생산, 특성 연구 및 가변지역유전자 분석)

  • Song, Moo-Young;Kim, Chang-Seok;Park, Sang-Koo;Lee, Jae-Sun;Yoo, Tae-Hyoung;Ko, In-Young
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.281-286
    • /
    • 2003
  • Background: Hepatitis B virus (HBV) infection is one of the worldwide public health problem affecting about 300 million people. The envelope protein of HBV consists of three components known as preS1, preS2, and S antigen. According to the recent study, anti-HBs Ab showed effective neutralization ability against HBV from chronic hepatitis B and liver transplant patients, suggesting the possible development of therapeutic antibody. Methods: Spleen cells immunized with S antigen of HBV were fused with myeloma cell line to obtain HBsAg specific monoclonal antibodies. High affinity antibodies against HBsAg (adr, ad and ay type) were selected by competitive ELISA method. Nucleotide sequence of the variable regions of monoclonal antibodies was analyzed by RT-PCR followed by conventional sequencing method. Results: We produced 14 murine monoclonal antibodies which recognize S antigen of HBV. Two of them, A9-11 and C6-9 showed the highest affinity. The sequence analysis of A9-11 revealed that variable regions of the heavy chain and light chains are members of mouse heavy chain I (B) and light chain lambda 1, respectively. Likewise, the sequence analysis of C6-9 revealed that variable regions of the heavy chain and light chains are members of mouse heavy chain II (B) and light chain kappa 1, respectively. Neutralization assay showed that A9-11 and C6-9 effectively neutralize the HBV infection. Conclusion: These results suggest that A9-11 and C6-9 mouse monoclonal antibodies can be used for the development of therapeutic antibody for HBV infection.

A Study on the Straight Path Prediction Technology of White LED Marker-based AGV in Indoor Environment (실내 환경에서 White LED 마커 기반 무인 운반차의 직진경로 예측 기술 연구)

  • Woo, Deok gun;vinayagam, Mariappan;Kim, Young min;Cha, Jae sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.48-54
    • /
    • 2018
  • With the 4th industry era, smart factories are emerging. In the era of multi-product small scale production, unmanned transportation vehicles are rapidly increasing in utilization of unmanned transportation vehicles that carry and arrange goods in the work space. The conventional unmanned vehicle detected its position by using the guided line method and the position based method for indoor location recognition and movement. This method has disadvantages of initial high cost and maintenance / maintenance. In this paper, to solve the disadvantages, the method of predicting the direct path of the unmanned vehicle through the Kalman filter is verified using the white LED marker of the warehouse and the position data and the image data of the white LED marker recognition image. Through this, the reliability of the linear movement which occupies the most part in the lattice structure is secured. It is also expected that the reliance on additional position sensors will also be reduced.