• Title/Summary/Keyword: Production Forecasting

Search Result 223, Processing Time 0.031 seconds

Design of a Multi-Agent System Architecture for Implementing CPFR (CPFR 구현을 위한 다중 에이전트 시스템 구조설계)

  • Kim, Chang-Ouk;Kim, Sun-II;Yoon, Jung-Wook;Park, Yun-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Advance in Internet technology has changed traditional production planning and control methods. In particular, collaborations between participants in supply chains are being increasingly addressed in industry for enhancing chain-wide productivity. A representative paradigm that emphasizes collaboration in production planning and control is CPFR(Collaborative Planning, Forecasting and Replenishment). In this paper, we present a multi-agent system architecture that supports the collaborations specified in CPFR. The multi-agent system architecture consists of event manager, data view agent, business rule agent, and collaboration agent. The collaboration agent systematically controls negotiation between supplier and buyer with the aid of collaboration protocol and blackboard. The multi-agent system has been implemented with EJB(Enterprise Java Beans).

The Optimal Compensation Scheme for Large-scale Windfarm using Forecasting Algorithm and Energy Storages (예측 알고리즘와 에너지 저장장치를 이용한 풍력발전단지 최적 출력 보상 방안)

  • Lee, Han-Sang;Kim, Ka-Byong;Jung, Se-Yong;Park, Byeong-Cheol;Han, Sang-Chul;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.396-397
    • /
    • 2011
  • As moving away from fossil fuel makes rapid progress, new paradigm has arisen in the power industry area. Developing alternative energy source is progressing actively, the proportion of renewable energy in electricity production is expected to be increased. Because the output of wind farm depends on wind characteristic, minimizing the output fluctuation is a key to keep the power system controllable and stable. Various compensation scheme for stabilizing the output of wind farm has been developed. Considering some requirements such as reaction velocity, controllability, scalability and applicability, energy storage system is one of the effective methods for spreading of renewable energy. In this paper, method of compensating method with forecasting algorithm was simulated, and then the results was analyzed.

  • PDF

A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand (수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Song, Jae-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

Forecasting biomass and recruits by age-structured spawner-recruit model incorporating environmental variables (환경요인을 결합한 연령구조 재생산모델에 의한 자원량 및 가입량 예측)

  • Lee, Jae Bong;Lee, Dong Woo;Choi, Ilsu;Zhang, Chang Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.445-451
    • /
    • 2012
  • We developed an age-based spawner-recruit model incorporating environmental variables to forecast stock biomass and recruits of pelagic fish in this study. We applied the model to the Tsushima stock of jack mackerel, which is shared by Korea and Japan. The stock biomass of jack mackerel (Trachurus japonicus) around Korean waters ranged from 141 thousand metric tons (mt) and 728 thousand mt and recruits ranged from 27 thousand mt to 283 thousand mt. We hind-casted the stock biomass to evaluate the model performance and robustness for the period of 1987~2009. It was found that the model has been useful to forecast stock biomass and recruits for the period of the lifespan of fish species. The model is also capable of forecasting the long-term period, assuming a certain climatic regime.

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

Weed Control Efficacy and Production of Fruit according to Several Weed Control Methods in an Apple Orchard (사과원에서 잡초방제 방법이 제초효과 및 과실생산에 미치는 영향)

  • jang, Il;Kang, Ji Eun;Kim, Hyang Mi;Park, Yong Seog;Lee, Jeong Deug;Suh, Sang Jae
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.104-110
    • /
    • 2015
  • This study was conducted for 3 years in an apple orchard to investigate the efficacy of the glufosinate-ammonium (GFA) SL for weed control in comparison to non-woven fabric mulch, sod culture and machinery cutting treatments. Glufosinate-ammonium SL 18% was applied with 2 to 3 times, and the extents of injury caused by the different weed control methods were also investigated during the 3 years. The highest level of weed control was obtained by glufosinate-ammonium 3 times spray (98.7%), followed by machinery cutting (95.1%), glufosinate-ammonium 2 times spray (81.5%) and natural sod culture (5.8%). Amounts of fruit production in three times application of glufosinate-ammonium 540 g a.i. $ha^{-1}$, twice application of GFA, machinery cutting, non-woven fabric processing, sod culture and untreated control were 27.2, 26.2, 25.3, 24.1, 20.4 and 13.3 kg, respectively. There was no toxicity symptom of glufosinate-ammonium on the whole tree such as fruit, bud, trunk, branch and flower during the 3 years.

Development of Short-term Heat Demand Forecasting Model using Real-time Demand Information from Calorimeters (실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구)

  • Song, Sang Hwa;Shin, KwangSup;Lee, JaeHun;Jung, YunJae;Lee, JaeSeung;Yoon, SeokMann
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.17-27
    • /
    • 2020
  • District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.

Analysis of Global Food Market and Food-Energy Price Links: Based on System Dynamics Approach

  • Kim, Gyu-Rim
    • Korean System Dynamics Review
    • /
    • v.10 no.3
    • /
    • pp.105-124
    • /
    • 2009
  • The situation of the global food markets has been being rapidly restructured and entering on a new phase by new dynamic and driving forces. The factors such as economic growth and income increase, high energy price, globalization, urbanization, and global climate change are transforming patterns of food consumption, production, and markets. The prices and markets of world food and energy are getting increasingly linked each other. Food and fuel are the global dilemma issues associated with the risk of diverting farmland or of consuming cereals for biofuel production in detriment of the cereals supply to the global food markets. An estimated 100 million tons of grain per year are being redirected from food to fuel. Therefore, the objectives of this study are as follows: Firstly, the study examines situations of the world food and energy resources, analyzes the trends of prices of the crude oil and biofuel, and formulates the food-energy links mechanism. Secondly, the study builds a simulation model, based on system dynamics approach, for not only analyzing the global cereals market and energy market but also forecasting the global production, consumption, and stock of those markets by 2030 in the future. The model of this study consists of four sectors, i.e., world population dynamics sector, global food market dynamics sector, global energy market dynamics sector, scenario sector of world economic growth and oil price.

  • PDF

Economic Ripple Effect of the TKR on the Logistics Industry

  • KIM, Sun-Ju
    • Journal of Distribution Science
    • /
    • v.19 no.3
    • /
    • pp.25-34
    • /
    • 2021
  • Purpose: The purpose of this study is to analyze the economic ripple effect(ERE) of logistics industry by construction of Trans-Korea Railway (TKR) and present policy measures to minimize the economic loss of South Korea (SK). Research design, data and methodology: As the analysis method, exponential smoothing was used for demand forecasting, Input-Output analysis was used to estimate the economic ripple effect coefficient, and scenario analysis was used to an efficient way to invest in TKR to minimize SK's economic losses. Results: 1) the production(logistics fares) of TKR for 10 years after its completion is about 11.42 trillion won in positive relations, and 26.89 billion won in negative relations. 2) the ERE of SK in positive relations is 24.32 trillion won in production inducement effect, 8.1 trillion won in value-added inducement effect, 3.54 trillion won in import inducement effect, and 70,930 persons in employment inducement effect. But the ERE was insufficient in the negative relations. 3) SK's efficient investment method is providing materials and equipment by SK and building the TKR by North Korea in positive inter-Korea relations. Conclusions: For the successful operation of TKR, international cooperation, legalization and stable peace settlement on the Korean Peninsula are required.