• Title/Summary/Keyword: Production Cycle

Search Result 1,387, Processing Time 0.029 seconds

A Study on the Revitalization Pattern of Industry in Decline: Focusing on Korean Shoe Industry

  • LEE, Kang-Sun;CHOI, Kyu-Jin;KANG, Sung-Wook;CHO, Dae-Myeong
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.10 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • Purpose - This study aims to study the activation pattern of declining industries by applying the Gompertz growth model using available resources based on the theory of industrial life cycle, classifying declining industries among Korean manufacturing industries, and identifying resource input characteristics. Research design and methodology - This study was conducted by combining the Gompertz growth model that predicts the limit of output based on available resources under the industrial life cycle theory. Using Gompertz model, this study analyzed the life cycle of 39 Korean manufacturing industries from the perspective of domestic production, number of employees, and fixed assets Results - According to a life cycle analysis of 39 manufacturing industries in Korea, the computer, textile, and shoe industries were classified as declining industries. Among them, research on resource input characteristics on the shoe industry showed that domestic production and the number of employees decreased, while the proportion of domestic R&D personnel and the number of research departments gradually increased. Conclusion - Among the declining industries in Korea, the shoe industry is considered to revitalize the industry, that is, to extend the life of the declining industry by offshoring its production site and improving constitution with a "R&D center for global" support.

A central facility concept for nuclear microreactor maintenance and fuel cycle management

  • Faris Fakhry;Jacopo Buongiorno;Steve Rhyne;Benjamin Cross;Paul Roege;Bruce Landrey
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.855-865
    • /
    • 2024
  • Commercial deployment of nuclear microreactors presents an opportunity for the industry to rethink its approach to manufacturing, siting, operation and maintenance, and fuel cycle management as certain principles used in grid-scale nuclear projects are not applicable to a decentralized microreactor economy. The success of this nascent industry is dependent on its ability to reduce infrastructure, logistical, regulatory and lifecycle costs. A utility-like 'Central Facility' that consolidates the services required and responsibilities borne by vendors into one or a few centralized locations will be necessary to support the deployment of a fleet of microreactors. This paper discusses the requirements for a Central Facility, its implications on the cost structures of owners and suppliers of microreactors, and the impact of the facility for the broader microreactor industry. In addition, this paper discusses the pre-requisites for eligibility as well as the opportunities for a Central Facility host site. While there are many suitable locations for such a capability across the U.S., this paper considers a facility co-located with the Vogtle Nuclear Power Plant and Savannah River Sites to illustrate how a Central Facility can leverage the existing infrastructure and stimulate a local ecosystem.

Study on OTEC for the Production of Electric Power and Desalinated Water (전력 및 담수생산을 위한 해양온도차발전에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Ocean Thermal Energy Conversion(OTEC) power plants have been examined as a viable option for supplying clean energy. This paper evaluated the thermodynamic performance of the OTEC Power system for the production of electric power and desalinated water. The results show that newly developed fluids such as R32, R125, R143a, and R410A that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Overall cycle efficiency of open cycle is the lowest value of 3.01% because about 10% of the gross power is used for pumping out non-condensable gas. Also, the hybrid cycle is an attempt to combine the best features and avoid the worst features of the open and closed cycles. The overall cycle efficiency of hybrid cycle is 3.44% and the amount of desalinated water is 0.0619 kg/s.

A system's approach for an aggregate control of order entry-production schedule-shippment cycle (수주-생산-출하관리의 효율성제고 종합방안)

  • Jeong, Byeong-Hui;Yeo, Sang-Hwan;Lee, Myeon-U;Yun, Jo-Deok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.2
    • /
    • pp.43-54
    • /
    • 1981
  • In a complex production system, the efficient control of order entry-production schedule-shippment cycle is one of the most important managerial aspects. In this paper, an aggregate control mechanism has been developed. The result showed steps for improving and for optimizing the total systems efficiency. A simplified guidelines for a con ceptual data base has been suggested.

  • PDF

An Assignment-Balance-Optimization Algorithm for Minimizing Production Cycle Time of a Printed Circuit Board Assembly Line

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.97-103
    • /
    • 2016
  • This paper deals with the cycle time minimization problem that determines the productivity in printed circuit board (PCB) with n components using the m placement machines. This is known as production cycle time determination problem (PCTDP). The polynomial time algorithm to be obtain the optimal solution has been unknown yet, therefore this hard problem classified by NP-complete. This paper gets the initial assignment result with the machine has minimum unit placement time per each component firstly. Then, the balancing process with reallocation from overhead machine to underhead machine. Finally, we perform the swap optimization and get the optimal solution of cycle time $T^*$ within O(mn) computational complexity. For experimental data, the proposed algorithm can be obtain the same result as integer programming+branch-and-bound (IP+B&B) and B&B.

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya;Adem Acir;Senay Yalcin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4287-4294
    • /
    • 2023
  • In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.

A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine - (Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로))

  • Jo, Hyun-Jung;Kim, Woo-Ram;Park, Ji-Hyoung;Hwang, Young-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

Two-Echelon Production-Inventory System with Sequence Dependent Setup Costs (생산준비 비용이 생산순서에 종속적인 경우의 2단계 생산-재고 시스템)

  • Moon, Dug-Hee;Hwang, Hark
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.65-74
    • /
    • 1993
  • In this paper, a two-echelon production-inventory model is developed which integrates the production scheduling problem of the multi-products produced on a single facility and the inventory problem of the related raw materials. The setup costs of the final products are assumed to be dependent on the production sequence. The aim is to determine simultaneously the production cycle time and the production sequence of the final products, and the procurement cycle times of the raw materials. For the model developed, a solution algorithm is suggested and illustrated with a numerical example. And the result is compared with those obtained by two separate subproblems.

  • PDF