• Title/Summary/Keyword: Production Conditions(Capacity)

Search Result 239, Processing Time 0.029 seconds

Oxidative stress and the antioxidant enzyme system in the developing brain

  • Shim, So-Yeon;Kim, Han-Suk
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.3
    • /
    • pp.107-111
    • /
    • 2013
  • Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS) play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide ($O2^{\cdot-}$), hydroxyl radical ($OH^{\cdot}$), and hydrogen peroxide ($H_2O_2$). Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx), is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

Development Status of High Enthalpy Plasma Equipment (전북대 고온플라즈마 설비 구축 및 응용연구 소개)

  • Choi, Chea-Hong;Lee, Mi-Yun;Kim, Min-Ho;Hong, Bong-Guen;Seo, Jun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.694-696
    • /
    • 2011
  • The high enthalpy plasma research center in Chonbuk national university is under construction for four types of plasma equipments. The equipments are 1set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4 MW class enhanced Huels type plasma quipment, 1 set of 60 kW RF plasma equipment and 1 set of 200 kW RF plasma equipment. 60kW RF plasma system is R&D and pilot scale production equipment of nano powder synthesis and plasma spray coating. 200kW RF plasma system is mass production equipment with high power capacity of nano powder synthesis. 0.4MW plasma system can be applied to the ground test facility for material testing under re-entry conditions for space vehicles.

  • PDF

A Study on Organic Resources for Pig Manure Treatment by Vermicomposting (지렁이에 의한 돈분 퇴비화용 유기성자원 연구)

  • Lee, J.S.;Choi, D.C.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.289-296
    • /
    • 2009
  • The effects of the processing mixture of pig manure and various organic wastes on the growth, cast production of earthworm, and conversion of organic matter to earthworm tissues by vermicomposting. The substances used in this experiments were sawdust, rice hull, coffee waste, brewery waste, litters, turfgrass cutting residues, rice bran, vegetable wastes and rice straw and were mixed with pig manure at a ratios of 50:50 (v/v), and pig manure 100% (control), respectively. The highest values of growth parameters, cast production and conversion efficiency of organic matter to earthworm tissues were obtained at the mixtures of pig manure with coffee waste, it may due to the favourable diet conditions to process with pig manure by vermicomposting. But, all of the earthworm died in the pig manure 100% (control) and pig manure with vegetable wastes treatments by vermicomposting was impossible in this experiment. The vermicast contained a higher values of total nitrogen, available phosphorus, exchangeable cations and cation exchange capacity than their parent materials with increased availability of nutrients and improved physicochemical properties.

  • PDF

Analysis of management status of chestnut cultivation in Chungcheongnam-do

  • Oh, Do Kyo;Ji, Dong Hyun;Kim, Se Bin
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.473-482
    • /
    • 2021
  • In this study, we attempted to estimate the degree of management of chestnut forestry households in Chungcheongnam-do and to provide information for establishing chestnut cultivation-related policies. The chestnut management standard diagnostic table consists of three major categories, namely, management base, management and sales capacity, and production technology levels, along with 19 subcategories. A survey of 309 chestnut forestry households was conducted from 2014 to 2019 in Gongju, Cheongyang, and Buyeo in Chungcheongnam-do. The average score for the 19 subcategories was 65.7 points, indicating that these areas have excellent management conditions. When the total score was higher, the output per hectare and the rate of top-grade products in the total output were also higher, indicating a significant correlation. These findings will be useful for providing consulting services to chestnut growers as they highlight the correlation between the higher scores of the indicators in the chestnut management standard diagnostic table and the management performance of the farmers. We found that the scores of the indicators for management and sale skill, such as management record and analysis, material purchase, and direct transaction with consumers, were relatively lower than those of the indicators for management base and production skill. It is assumed that the chestnut growers aging has led to negligence in recording details on incomes, expenditures, and work and lowered the willingness to make substantial profits. Therefore, it is essential to overcome these problems for profitable chestnut farming.

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

The Effects of Various Burner Array on Workpiece and Gas Temperature in a Continuous Reheating Furnace (연속식 가열로에서 버너배열에 따른 소재 및 가스온도의 영향)

  • Kim, Kang-Min;Jeon, Chung-Hwan;Yoo, In;Kim, Gyu-Bo
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.23-31
    • /
    • 2017
  • Numerical study was conducted for the effects of various burner array on the workpiece and the gas temperature in a continuos reheating furnace. Under the same conditions which were the total heat of combustion, the heat capacity of unit burner, the number of burner and burner array were changed to be applied the furnace. The behavior of workpiece temperature and gas temperature in a furnace were evaluated for the effects as function of the changed conditions. A continuous reheating furnace designed for 110 tons/day of production capacity was applied in this study. The furnace which has several gas burners is designed to heat a workpiece. By this study, the better condition was confirmed than the existing designed condition.

Evaluation of glycerol encapsulated with alginate and alginate-chitosan polymers in gut environment and its resistance to rumen microbial degradation

  • Gawad, Ramadan;Fellner, Vivek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.72-81
    • /
    • 2019
  • Objective: To determine the effect of gut pH and rumen microbial fermentation on glycerol encapsulated in alginate and alginate-chitosan polymers. Methods: Glycerol was encapsulated at 2.5%, 5%, 7.5%, or 10% (w/w) with sodium alginate (A) and alginate-chitosan (AC) polymers. Surface morphology and chemical modifications of the beads were evaluated using scanning electron microscopy and Fourier transform infrared (FTIR) spectra. Encapsulation efficiency was determined at the 5% glycerol inclusion level in two experiments. In experiment 1, 0.5 g of alginate-glycerol (AG) and alginate-chitosan glycerol (ACG) beads were incubated for 2 h at $39^{\circ}C$ in pH 2 buffer followed by 24 h in pH 8 buffer to simulate gastric and intestinal conditions, respectively. In experiment 2, 0.5 g of AG and ACG beads were incubated in pH 6 buffer at $39^{\circ}C$ for 8 h to simulate rumen conditions. All incubations were replicated four times. Free glycerol content was determined using a spectrophotometer and used to assess loading capacity and encapsulation efficiency. An in vitro experiment with mixed cultures of rumen microbes was conducted to determine effect of encapsulation on microbial fermentation. Data were analyzed according to a complete block design using the MIXED procedure of SAS (SAS Institute, Cary, NC, USA). Results: For AG and ACG, loading capacity and efficiency were 64.7%, 74.7%, 70.3%, and 78.1%, respectively. Based on the FTIR spectra and scanning electron microscopy, ACG treatment demonstrated more intense and stronger ionic bonds. At pH 6, 36.1% and 29.7% of glycerol was released from AG and ACG, respectively. At pH 2 minimal glycerol was released but pH 8 resulted in 95.7% and 93.9% of glycerol released from AG and ACG, respectively. In vitro microbial data show reduced (p<0.05) fermentation of encapsulated glycerol after 24 h of incubation. Conclusion: The AC polymer provided greater protection in acidic pH with a gradual release of intact glycerol when exposed to an alkaline pH.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

Biodegradation of Ethylene in an Activated Carbon Biofilter

  • Kim, Jong-O;Chung, Il-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.79-84
    • /
    • 2002
  • The objective of this study was to investigate the biodegradation of ethylene in an activated carbon biofilter inoculated with immobilized microbial consortium. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. Its was found that carbon dioxide was produced at a rate of 87 mg day$\^$-1/, which corresponded to a volume of 0.05 L day$\^$-1/. During operation with an inlet ethylene of 290 ppm, the maximum elimination capacity of the biofilter was 34 g of C$_2$H$_4$m$\^$-3/ day$\^$-1/. The biofilter could provide an attractive treatment technology for removing ethylene, an extremely volatile and slowly adsorbed compound.