• Title/Summary/Keyword: Processing parameters

Search Result 2,729, Processing Time 0.033 seconds

A Self-Adaptive Agorithm for Optimizing Random Early Detection(RED) Dynamics (라우터 버퍼 관리 기반 체증 제어 방식의 최적화를 위한 자체 적응 알고리즘)

  • Hong, Seok-Won;Yu, Yeong-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3097-3107
    • /
    • 1999
  • Recently many studies have been done on the Random Early Detection(RED) algorithm as an active queue management and congestion avoidance scheme in the Internet. In this paper we first overview the characteristics of RED and the modified RED algorithms in order to understand the current status of these studies. Then we analyze the RED dynamics by investigating how RED parameters affect router queue behavior. We show the cases when RED fails since it cannot react to queue state changes aggressively due to the deterministic use of its parameters. Based on the RED parameter analysis, we propose a self-adaptive algorithm to cope with this RED weakness. In this algorithm we make two parameters be adjusted themselves depending on the queue states. One parameter is the maximum probability to drop or mark the packet at the congestion state. This parameter can be adjusted to react the long burst of traffic, consequently reducing the congestion disaster. The other parameter is the queue weight which is also adjusted aggressively in order for the average queue size to catch up with the current queue size when the queue moves from the congestion state to the stable state.

  • PDF

Optimization of arc brazing process parameters for exhaust system parts using box-behnken design of experiment

  • Kim, Yong;Park, Pyeong-Won;Park, Ki-Young;Ryu, Jin-Chul
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • Stainless steel is used in automobile muffler and exhaust systems. However, in comparison with other steels it has a high thermal expansion rate and low thermal conductivity, and undergoes excessive thermal deformation after welding. To address this problem, we evaluated the use of arc brazing in place of welding for the processing of an exhaust system, and investigated the parameters that affect the joint characteristics. Muffler parts STS439 and hot-dipped Al coated steel were used as test specimens, and CuAl brazing wire was used as the filler metal for the cold metal transfer (CMT) welding machine, which is a low heat input arc welder. In addition, a Box-Behnken design of experiment was used, which is a response surface methodology. The main process parameters (current, speed, and torch angle) were used to determine the appropriate welding quality and the mechanical properties of the brazing part was evaluated at the optimal welding condition. The optimal processing condition for arc brazing was 135A current, 51cm/min speed and $74^{\circ}$ torch angle. The process was applied to an actual exhaust system muffler and the prototype was validated by thermal fatigue, thermal shock, and endurance limit tests.

Process Analysis of Melting Behaviors in Selective Laser Melting Process (선택적 레이저 용융 공정시 용융 거동에 대한 공정 분석)

  • Sung, M.Y.;Joo, B.D.;Kim, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.517-522
    • /
    • 2010
  • Selective laser melting (SLM) is emerged as a new manufacturing technique to directly fabricate precise parts using metallic materials. The final characteristics of a component fabricated through the SLM process are strongly dependent upon various parameters such as laser power, scan rate and pulse duration, etc. This paper, therefore, focuses on the dimensional characteristics of melted $20{\mu}m$ Fe-Cr-Ni powder by fiber laser for the selective laser melting process. With energy density decrease, the height and depth were decreased. Although the conditions are of the same energy density, the shape is different by laser power and scan rate. The shapes at various laser parameters were divided into 3 groups based on depth over height. The smooth regular shape is obtained under the conditions of $50{\mu}m$ of powder height and $15-20{\mu}s$ of pulse duration. And the laser power influenced the variation of shape more significantly than the scan rate.

Rough Set-Based Approach for Automatic Emotion Classification of Music

  • Baniya, Babu Kaji;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.400-416
    • /
    • 2017
  • Music emotion is an important component in the field of music information retrieval and computational musicology. This paper proposes an approach for automatic emotion classification, based on rough set (RS) theory. In the proposed approach, four different sets of music features are extracted, representing dynamics, rhythm, spectral, and harmony. From the features, five different statistical parameters are considered as attributes, including up to the $4^{th}$ order central moments of each feature, and covariance components of mutual ones. The large number of attributes is controlled by RS-based approach, in which superfluous features are removed, to obtain indispensable ones. In addition, RS-based approach makes it possible to visualize which attributes play a significant role in the generated rules, and also determine the strength of each rule for classification. The experiments have been performed to find out which audio features and which of the different statistical parameters derived from them are important for emotion classification. Also, the resulting indispensable attributes and the usefulness of covariance components have been discussed. The overall classification accuracy with all statistical parameters has recorded comparatively better than currently existing methods on a pair of datasets.

Integrated Software Quality Evaluation: A Fuzzy Multi-Criteria Approach

  • Challa, Jagat Sesh;Paul, Arindam;Dada, Yogesh;Nerella, Venkatesh;Srivastava, Praveen Ranjan;Singh, Ajit Pratap
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.473-518
    • /
    • 2011
  • Software measurement is a key factor in managing, controlling, and improving the software development processes. Software quality is one of the most important factors for assessing the global competitive position of any software company. Thus the quantification of quality parameters and integrating them into quality models is very essential. Software quality criteria are not very easily measured and quantified. Many attempts have been made to exactly quantify the software quality parameters using various models such as ISO/IEC 9126 Quality Model, Boehm's Model, McCall's model, etc. In this paper an attempt has been made to provide a tool for precisely quantifying software quality factors with the help of quality factors stated in ISO/IEC 9126 model. Due to the unpredictable nature of the software quality attributes, the fuzzy multi criteria approach has been used to evolve the quality of the software.

The Simulation of Si quantum Dot Formation in PVD Process (PVD 공정을 이용한 Si 양자점 형성 전산모사)

  • Kim, Yun-Sung;Chung, Yong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.517-522
    • /
    • 2002
  • In this study, the effect of the processing parameters in PVD process on the size and the distribution of deposited Si quantum dots was quantitatively investigated by computational simulation utilizing Monte Carlo method. The processing parameters, substrate temperature, deposition time, gas pressure and target-substrate distance were selected as variables since those parameters are often selected as variables in PVD experiments. It is predicted that the density of $1{\times}10^{12}cm^{-2}$ Si quantum dots can be deposited on the substrate when the deposition rate is 0.05 nm/sec at the substrate temperature of 490${\circ}$, deposition time of 7 sec, gas pressure of 3 mTorr and target-substrate distance of 8 cm.

A Study on Recognition of Operating Condition for Hydraulic Driving Members

  • Park, Heung-Sik;Kim, Young-Hee;Kim, Dong-Ho;Cho, Yon-Sang;Park, Jae-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.44-49
    • /
    • 2003
  • The morphological analysis of wear debris can provide early a failure diagnosis in lubricated moving system. It can be effective to analyze operating conditions of oil-lubricated tribological system with shape characteristics of wear debris in a lubricant. But, in order to predict and recognize an operating condition of lubricated machine, it is needed to analyze and to identify shape characteristics of wear debris. Therefore, If the morphological characteristics of wear debris are recognized by computer image analysis using the neural network algorithm, it is possible to recognize operating condition of hydraulic driving members. In this study, wear debris in the lubricating oil are extracted by membrane filter (0.45$\mu\textrm{m}$), and the quantitative values of shape parameters of wear debris are calculated by the digital image processing. This shape parameters are studied and identified by the artificial neural network algorithm. The result of study could be applied to prediction and to recognition of the operating condition of hydraulic driving members in lubricated machine systems.

Dynamic File Allocation Problems In Distributed Systems (분산 시스템의 동적 파일 할당 연구)

  • Seo, Pil-Kyo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1681-1693
    • /
    • 1997
  • In a distributed system, the simple file allocation problem determines the placement of copies of a file, so as to minimize the operating costs. The simple file allocation problem assumes the cost parameters to be fixed. In practice, these parameters change over time. In this research, dynamic file allocation problem for both single and multiple files are considered, which account for these changing parameters. A model for dynamic file allocation problem is formulated as a mixed integer program for which Lagrangian relaxation based branch-and-bound algorithm is developed. This algorithms is implemented and its efficiency is tested on medium to large test problems.

  • PDF

An Improved Fast Camera Calibration Method for Mobile Terminals

  • Guan, Fang-li;Xu, Ai-jun;Jiang, Guang-yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1082-1095
    • /
    • 2019
  • Camera calibration is an important part of machine vision and close-range photogrammetry. Since current calibration methods fail to obtain ideal internal and external camera parameters with limited computing resources on mobile terminals efficiently, this paper proposes an improved fast camera calibration method for mobile terminals. Based on traditional camera calibration method, the new method introduces two-order radial distortion and tangential distortion models to establish the camera model with nonlinear distortion items. Meanwhile, the nonlinear least square L-M algorithm is used to optimize parameters iteration, the new method can quickly obtain high-precise internal and external camera parameters. The experimental results show that the new method improves the efficiency and precision of camera calibration. Terminals simulation experiment on PC indicates that the time consuming of parameter iteration reduced from 0.220 seconds to 0.063 seconds (0.234 seconds on mobile terminals) and the average reprojection error reduced from 0.25 pixel to 0.15 pixel. Therefore, the new method is an ideal mobile terminals camera calibration method which can expand the application range of 3D reconstruction and close-range photogrammetry technology on mobile terminals.

Time-reversal microwave focusing using multistatic data

  • Won-Young Song;Soon-Ik Jeon;Seong-Ho Son;Kwang-Jae Lee
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.333-346
    • /
    • 2024
  • Various techniques for noninvasively focus microwave energy on lesions have been proposed for thermotherapy. To focus the microwave energy on the lesion, a focusing parameter, which is referred to as the magnitude and phase of microwaves radiated from an external array antenna, is very important. Although the finite-difference time-domain (FDTD)-based time-reversal (TR) focusing algorithm is widely used, it has a long processing time if the focusing target position changes or if optimization is needed. We propose a technique to obtain multistatic data (MSD) based on Green's function and use it to derive the focusing parameters. Computer simulations were used to evaluate the electric fields inside the object using the FDTD method and Green's function as well as to compare the focusing parameters using FDTD- and MSD-based TR focusing algorithms. Regardless of the use of Green's function, the processing time of MSD-based TR focusing algorithms reduces to approximately 1/2 or 1/590 compared with the FDTD-based algorithm. In addition, we optimize the focusing parameters to eliminate hotspots, which are unnecessary focusing positions, by adding phase-reversed electric fields and confirm hotspot suppression through simulations.