• Title/Summary/Keyword: Processing element

Search Result 1,750, Processing Time 0.027 seconds

Numerical Simulation of Induction Hardening Process of Tubular Drive Shaft for Automobile (자동차용 중공 구동축의 고주파 경화 공정에 대한 수치적 연구)

  • Kang, G.P.;Oh, B.K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Induction hardening process of tubular drive shaft for automobile is simulated by combining the thermal, mechanical, electro-magnetic and metallurgical analysis models. Various material properties for each analysis model are obtained in a consistent way via material properties calculation software, JMatPro®. To consider the scanning process of induction heating, boundary element method is adopted for electro-magnetic field calculation. The distribution of temperature, stress and phase volume fraction are tracked out through the whole process and the effect of scanning velocity is reviewed. The analysis result shows that the critical principal stress is developed at the phase boundary where martensite is formed.

Cure and Heat Transfer Analysis in LED Silicone Lens using a Dynamic Cure Kinetics Method (승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화 및 열전달해석)

  • Song, M.J.;Kim, K.H.;Hong, S.K.;Park, J.Y.;Lee, J.W.;Yoon, G. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Recently, silicone is being used for LED chip lens due to its good thermal stability and optical transmittance. In order to predict residual stresses, which cause optical birefringence and mechanical warpage of silicone, a finite element analysis was conducted for the curing of silicone during molding. For the analysis of the curing process, a dynamic cure kinetics model was derived based on the results of a differential scanning calorimetry (DSC) testing and applied to the material properties for finite element analysis. Finite element simulation results showed that a step cure cycle reduced abrupt reaction heat and showed a decrease in the residual stresses.

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Finite Element Analysis on the Springback in the Forging-Bending of Metal Micro-Wire (금속 마이크로 와이어의 단조-굽힘 성형에서 스프링백에 관한 해석적 연구)

  • Kang, J.J.;Hong, S.K.;Jeon, B.H.;Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.649-656
    • /
    • 2008
  • Springback is one of factors affecting precision in metal forming. Its effect is particularly prominent in bending process. In this study, bending and forging process are used in order to manufacture a micro spring with two bending region from $60{\mu}m$ diameter wire. Springback in the process lowers the precision of the micro spring. Overbending for springback compensation has wide usage in a general way. However, this method requires repeated modifications of press dies until the tolerance is allowable, which causes that production cost and time increase. In this paper, we analyzed the mechanism of springback in the forming process of the micro spring using finite element method. In addition, a simple method to control springback without modifying dies was proposed by performing numerical analysis with various parameters.

Effects of welding direction and residual stress on the Laser welds (용접방향에 따른 겹치기 레이저 용접부의 피로강도)

  • Cho, Sung-Kyu;Jang, Sang-Kyu;Seo, Jung;Kim, Jung-Oh
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Finite element analysis and experiment were peformed to estimate the fatigue strength for the lap joint of laser weld. To consider quantitatively residual stress which effects on the fatigue strength of the lap joint of laser weld, after three dimensional modeling for the longitudinal and transverse direction, residual stress fields in the weldment were calculated using thermo-elastic-plastic finite element analysis, then the equivalent fatigue stress considering the residual stress was obtained. To ensure reliability of calculated fatigue strength, fatigue tests were performed. The calculated and experimental results showed a good agreement. The fatigue strength considering a residual stress was lower than that of without considering a residual stress in the lap joint of laser welding. The fatigue strength in the transverse direction was higher than that of longitudinal direction.

  • PDF

A Study on the Process Improvements of the Multi-stage Deep Drawing by the Rigid-plastic Finite Element Method (강소성 유한요소법을 이용한 다단계 디프드로잉의 공정개선에 관한 연구)

  • 전병희;민동균;김형종;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.440-453
    • /
    • 1994
  • The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. Computational results on the punch/die loads and thickness distributions were compared with the experiments of the current drawing processes. Deep-drawing processes of the redesigned shell to improve the specific strength and stiffness were simulated with the numerical method developed. With varying several process parameters such as blank size, corner radii of tools, and clearances, the simulation results showed the improvements in reducing the forming loads. Also forming defects were found during simulation and appropriate blank size could be verified.

  • PDF

Finite Element Analysis on Effect of Die Clearance on Shear Planes in Fine Blanking (파인 블랭킹에서 전단면에 미치는 다이 틈새의 영향에 관한 유한 요소 해석)

  • 김윤주;곽태수;배원병
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2000
  • A finite element analysis has been performed to investigate the effect of die clearance on shear planes in the fine blanking of a part of automobile safety belt. For the analysis, S45C is selected as an material, which is used in manufacturing the part of automobile safety belt, and Cockcroft-Latham fracture criterion is applied. Effect of die Clearance on die-roll width, die-roll depth, burnish zone, and fracture zone has been investigated in the finite element analysis by a rigid-plastic FEM code, DEFORM-2D. From the analysis, it has been found that die-roll depth and depth of the shear plane increase with increasing die clearance. And the burnish zone decreases with increasing die clearance, but the variation of fracture zone is opposite to that of burnish zone because the increase in die clearance requires less fracture energy. Theoretical predictions are compared with experimental results. There is a good agreement between theory and experiment.

  • PDF

A Comparative Study on Effect of Finite Element in Static Analysis of Sheet Metal Forming (판재성형 정적해석에서 유한요소의 영향에 대한 비교연구)

  • 윤용석;박종진
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • A series of parametric study was performed for the investigation on the influence of analysis parameters to the solution behavior in the elastic-plastic-static analysis of several sheet metal forming processes, such as deflection by a point force under plane strain and axisymmetric conditions, plane strain bending by a punch, axisymmetric stretching by a punch, axisymmetric bulging by hydraulic pressure, and axisymmetric deep drawing by a punch. The parameters considered are kind of element, number of elements, integration scheme for elemental equation and friction coefficient. Results obtained for different selections of those parameters were compared with each other, experimental measurements and analytical solution.

  • PDF

A New All-Hexahedral Refinement Technique by Automatic Expansion of Zero Thickness Element Layers (무두께 요소층을 이용한 육면체 격자의 세분화 기법)

  • 박철현;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.334-339
    • /
    • 2003
  • This paper presents a new algorithm that enables the refinement of hexahedral elements while maintaining the appropriate connectivity. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is applied to the analysis of plastic deformation process. The results show that the refined mesh gives smaller relative errors than the original mesh.

Influence of Frictional Behavior Depending on Contact Pressure on Springback at U Draw Bending (접촉 압력에 의한 마찰 특성 변화가 U 드로우 굽힘에서의 스프링백에 미치는 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.344-349
    • /
    • 2011
  • Variation of contact pressure causes change of friction coefficient, which in turn changes stress distribution in the sheet being formed and final springback. In the present study, U-draw bending experiments were carried out under constant blank holding force(BHF) and different blank sizes, and finite element analysis was conducted with and without considering contact pressure effect on friction. When the BHF was sufficiently high, the degree of springback was different between constant blank holding pressure condition and that with varying blank holding pressure. Finite element analysis considering the influence of contact pressure effect on friction could explain the occurrence of springback.