• Title/Summary/Keyword: Processing controller

Search Result 981, Processing Time 0.025 seconds

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.

The efficient implementation of the multi-channel active noise controller using a low-cost microcontroller unit (저가 microcontoller unit을 이용한 효율적인 다채널 능동 소음 제어기 구현)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.9-22
    • /
    • 2019
  • In this paper, we propose a method that can be applied to the efficient implementation of multi-channel active noise controller. Since the normalized MFxLMS (Modified Filtered-x Least Mean Square) algorithm for the multi-channel active noise control requires a large amount of computation, the difficulty has lied in implementing the algorithm using a low-cost MCU (Microcontoller Unit). We implement the multi-channel active noise controller efficiently by optimizing the software based on the features of the MCU. By maximizing the usage of single-cycle MAC (Multiply- Accumulate) operations and minimizing move operations of the delay memory, we can achieve more than 3 times the performance in the aspect of computational optimization, and by parellel processing using the auxillary processor included in the MCU, we can also obtain more than 4 times the performance. In addition, the usage of additional parts can be minimized by maximizing the usage of the peripherals embedded in the MCU.

Improvement of learning performance and control of a robot manipulator using neural network with adaptive learning rate (적응 학습률을 이용한 신경회로망의 학습성능개선 및 로봇 제어)

  • Lee, Bo-Hee;Lee, Taek-Seung;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.363-372
    • /
    • 1997
  • In this paper, the design and the implementation of the adaptive learning rate neural network controller for an articulate robot, which is being developed (or) has been developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies hardware structures by the time-division control with TMS32OC31 DSP chip. Proposed neural network controller with adaptive learning rate structure using expert's heuristics can improve learning speed. The proposed controller verifies its superiority by comparing response characteristics of conventional controller with those of the proposed controller that are obtained from the experiments for the 5 axis vertical articulated robot. We, also, present the generalization property of proposed controller for unlearned trajectory and the change of load through experimental data.

  • PDF

A Study on an Image-Based Target Tracking Controller using a Target States Estimator for Airborne Inertially Stabilized Systems (표적상태 추정기를 이용한 항공용 시선 안정화 장치의 영상기반 표적추적 제어기에 관한 연구)

  • Kim, Sungsu;Lee, Buhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.703-710
    • /
    • 2014
  • An Image-Based Target Tracker maintains LOS(Line Of Sight) to a target by controlling azimuth and elevation gimbals of an ISS(Inertially Stabilized System). Its controller produces the gimbals commands of the ISS using tracking errors provided by an image tracker. The control performance of the target tracker with PI controller generally used for tracking controller is limited because of bandwidth limitation by time delay yielded by image capture and processing of the image tracker. In this paper, tracking controller using target states estimator is proposed which can enhance the tracking performance under the highly dynamic maneuvering conditions of the ISS and the target. Simulation results show that the proposed method can improve the tracking performance than that with only PI controller.

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam Su-Myung;Choi Jung-Sik;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using learning mechanism-fuzzy neural network(LM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_{d}$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using LM-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using LM-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the LM-FNN and ANN controller.

A System Development for Car Signal and Sensor Control with Controller Area Network (CAN) Communication Protocol (Controller Area Network(CAN) 통신 프로토콜에 의한 자동차 신호 및 센서 제어 시스템의 개발)

  • 정차근
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.54-62
    • /
    • 2002
  • This paper describes a development of the integrated controller system for car electrical signal and sensor input/output control with CAN communication protocol. In order to improve the system reliability and effectiveness for the conventional controller using the wiring harness, a detailed integrated control system is introduced and discussed. The CAN communication protocol is a robust control method with serial bus system for the control of distributed module in the multiplexed network. Therefore, this has high reliability and flexibility in the overall control system implementation. This paper proposes an integrated system with high reliability and stability for control of various car signal, and evaluates the effectiveness of the system using the actual implementation. For these purposes, after a brief of the main features of the CAN will be addressed, this paper presents the result of development of the integrated hardware system and overall control program.

  • PDF

VLSI Architecture of General-purpose Memory Controller with High-Performance for Multiple Master (다중 마스터를 위한 고성능의 범용 메모리 제어기의 구조)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.175-182
    • /
    • 2011
  • In this paper, we implemented a high-performence memory controller which can accommodate processing blocks(multiple masters) in SoC for video signal processing. The memory controller is arbitrated by the internal arbiter which receives request signals from masters and sends grant and data signals to masters. The designed memory controller consists of Master Selector, Mster Arbiter, Memory Signal Generator, Command Decoder, and memory Signal Generator. It was designed using VHDL, and verified using the memory model of SAMSING Inc. For FPGA synthesis and verification, Quartus II of ATERA Inc. was used. The target device is Cyclone II. For simulation, ModelSim of Cadence Inc was used. Since the designed H/W can be stably operated in 174.28MHz, it satisfies the specification of SDRAM technology.

Implementation of a Communication Algorithm between Actuator Controller and Manufacturing System (제조 시스템과 제어기 사이의 통신알고리즘 구현에 관한 연구)

  • Jeong, Hwa-Young;Hong, Bong-Hwa;Kim, Eun-Won
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.46-52
    • /
    • 2009
  • The manufacturing system was used to communicate between controller and GUI system by RS232C. The controller is deal with processing the equipments such as cylinders, motors, sensors, and so on. The Gill system received the signal from actuator controller by direct communication ways, RS232C, and presented the data to user to analyze the all of status for manufacturing system. In this point, it is important that communication use the RS232C. The way is helpful to be able to reduce cost, have simple structure, and easily maintain the stable communication status. Otherwise, the way has some problem to loss signal or data under the high speed communication. So it needs to complement the communication process to without loss data. In this research, we made the communication algorithm and implement the process to reduce losing data when it send or receive the signal using RS232C between controller and manufacturing system.