• Title/Summary/Keyword: Processing Platform

Search Result 1,573, Processing Time 0.031 seconds

Study on Data Processing of the IOT Sensor Network Based on a Hadoop Cloud Platform and a TWLGA Scheduling Algorithm

  • Li, Guoyu;Yang, Kang
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1035-1043
    • /
    • 2021
  • An Internet of Things (IOT) sensor network is an effective solution for monitoring environmental conditions. However, IOT sensor networks generate massive data such that the abilities of massive data storage, processing, and query become technical challenges. To solve the problem, a Hadoop cloud platform is proposed. Using the time and workload genetic algorithm (TWLGA), the data processing platform enables the work of one node to be shared with other nodes, which not only raises efficiency of one single node but also provides the compatibility support to reduce the possible risk of software and hardware. In this experiment, a Hadoop cluster platform with TWLGA scheduling algorithm is developed, and the performance of the platform is tested. The results show that the Hadoop cloud platform is suitable for big data processing requirements of IOT sensor networks.

Design and Implementation of a GNSS Receiver Development Platform for Multi-band Signal Processing (다중대역 통합 신호처리 가능한 GNSS 수신기 개발 플랫폼 설계 및 구현)

  • Jinseok Kim;Sunyong Lee;Byeong Gyun Kim;Hung Seok Seo;Jongsun Ahn
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Global Navigation Satellite System (GNSS) receivers are becoming increasingly sophisticated, equipped with advanced features and precise specifications, thus demanding efficient and high-performance hardware platforms. This paper presents the design and implementation of a Field-Programmable Gate Array (FPGA)-based GNSS receiver development platform for multi-band signal processing. This platform utilizes a FPGA to provide a flexible and re-configurable hardware environment, enabling real-time signal processing, position determination, and handling of large-scale data. Integrated signal processing of L/S bands enhances the performance and functionality of GNSS receivers. Key components such as the RF frontend, signal processing modules, and power management are designed to ensure optimal signal reception and processing, supporting multiple GNSS. The developed hardware platform enables real-time signal processing and position determination, supporting multiple GNSS systems, thereby contributing to the advancement of GNSS development and research.

Development of An Integrated Display Software Platform for Small UAV with Parallel Processing Technique (병렬처리 기법을 이용한 소형 무인비행체용 통합 시현 소프트웨어 플랫폼 개발)

  • Lee, Young-Min;Hwang, In-So;Lim, Bae-Hyeon;Moon, Yong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • An integrated display software platform for small UAV is developed based on parallel processing technique in this paper. When the small UAV with high-performance camera and avionic modules is employed to various surveillance-related missions, it is important to reduce the operator's workload and increase the monitoring efficiency. For this purpose, it is needed to develop an efficient monitoring software enable to manipulate the image and flight data obtained during flight within the given processing time and display them simultaneously. In this paper, we set up requirements and suggest the architecture for the software platform. The integrated software platform is implemented with parallel processing scheme. Based on AR drone, we verified that the various data are concurrently displayed by the suggest software platform.

3D Ground Terrain Processing Platform for Automated Excavation System

  • Kim, Seok;Kim, Tae-yeong;Park, Jae-Woo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.669-670
    • /
    • 2015
  • Efficient management of the construction heavy equipment is required to reduce the rate of carbon emissions and on-site accidents. The intelligent excavation system (IES) will improve the construction quality and productivity through information technologies and efficient equipment operation, especially in large earthwork projects. Three-dimensional digitized ground data should be required for identifying the path of heavy equipment and work-site environment. Rapid development of terrain laser scanners (TLS) is more readily to acquire the digital data. This study suggests the '3D ground terrain processing platform (3DGTPP)' including data manipulating module and analyzing module of the scanned data for intelligent earthmoving equipment operation. The processing platform consists of six modules, including scanning, registering, manipulating, analyzing, transmitting, and storing. 3D ground terrain processing platform presented in this study will provide fundamental information for intelligent excavation system (IES), which will increase the efficiency of earthworks and safety of workers in significant.

  • PDF

Design and Implementation of a TMN Agent Platform based on a Multi-thread Parallel Processing Architecture (멀티쓰레드 기반 병렬처리 구조를 이용한 TMN 에이젼트 플랫폼 설계 및 구현)

  • Kim, Seong-U;Kim, Yeong-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.6
    • /
    • pp.793-800
    • /
    • 1999
  • TMN Agent Platform은 망 요소의 운영상태와 자원들을 GDMO에 따라 관리객체(Managed Object : MO)로 모델링 하고, 자원들의 현재 상태를 유지하며, 관리자(Manager)로부터의 망 관리 기능 요구에 따라 조작된다. 그러므로, 에이전트의 성능향상은 전체적인 통신망 관리의 성능향상에 직접적인 영향을 미친다.본 논문에서는 TMN 에이전트의 기능요구 사항을 분석하고, 이를 토대로 성능향상을 위해 멀티스레드 기법을 사용하는 병렬 처리 구조의 TMN Agent Platform의 기능구조를 제시한다. 또한 에이전트와 다양한 자원들간의 효율적인 메시지전달을 위한 체계를 제시하며, 구현된 TMN Agent Platform의 성능을 분석한다.Abstract TMN Agent manages the operational status and real-resources of network elements, such as switching nodes and transmission systems. It performs the requested management functions from manager and maintains consistent status data of real-resource. The performance of agent system affects directly the performance of network management operation. If the agent is implemented by sequential processing scheme with single process, the agent processing can be delayed or blocked according to the status of real-resources. This problem can be solved by parallel and distributed processing scheme.To improve the processing performance of TMN Agent, we propose a TMN Agent Platform's functional architecture that is based on parallel processing with multi-tread and effective message transferring scheme between agent and various real-resource. We analyze the performance of the implemented TMN Agent Platform.

The Development of Modularized Post Processing GPS Software Receiving Platform using MATLAB Simulink

  • Kim, Ghang-Ho;So, Hyoung-Min;Jeon, Sang-Hoon;Kee, Chang-Don;Cho, Young-Su;Choi, Wansik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Modularized GPS software defined radio (SDR) has many advantages of applying and modifying algorithm. Hardware based GPS receiver uses many hardware parts (such as RF front, correlators, CPU and other peripherals) that process tracked signal and navigation data to calculate user position, while SDR uses software modules, which run on general purpose CPU platform or embedded DSP. SDR does not have to change hardware part and is not limited by hardware capability when new processing algorithm is applied. The weakness of SDR is that software correlation takes lots of processing time. However, in these days the evolution of processing power of MPU and DSP leads the competitiveness of SDR against the hardware GPS receiver. This paper shows a study of modulization of GPS software platform and it presents development of the GNSS software platform using MATLAB Simulink™. We focus on post processing SDR platform which is usually adapted in research area. The main functions of SDR are GPS signal acquisition, signal tracking, decoding navigation data and calculating stand alone user position from stored data that was down converted and sampled intermediate frequency (IF) data. Each module of SDR platform is categorized by function for applicability for applying for other frequency and GPS signal easily. The developed software platform is tested using stored data which is down-converted and sampled IF data file. The test results present that the software platform calculates user position properly.

A Study on Finding Emergency Conditions for Automatic Authentication Applying Big Data Processing and AI Mechanism on Medical Information Platform

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2772-2786
    • /
    • 2022
  • We had researched an automatic authentication-supported medical information platform[6]. The proposed automatic authentication consists of user authentication and mobile terminal authentication, and the authentications are performed simultaneously in patients' emergency conditions. In this paper, we studied on finding emergency conditions for the automatic authentication by applying big data processing and AI mechanism on the extended medical information platform with an added edge computing system. We used big data processing, SVM, and 1-Dimension CNN of AI mechanism to find emergency conditions as authentication means considering patients' underlying diseases such as hypertension, diabetes mellitus, and arrhythmia. To quickly determine a patient's emergency conditions, we placed edge computing at the end of the platform. The medical information server derives patients' emergency conditions decision values using big data processing and AI mechanism and transmits the values to an edge node. If the edge node determines the patient emergency conditions, the edge node notifies the emergency conditions to the medical information server. The medical server transmits an emergency message to the patient's charge medical staff. The medical staff performs the automatic authentication using a mobile terminal. After the automatic authentication is completed, the medical staff can access the patient's upper medical information that was not seen in the normal condition.

Development of 3D Terrain Processing Platform Using Terrestrial Laser Scanning Data (지상레이저스캐닝 데이터를 활용한 3차원 지반지형 분석 플랫폼 개발)

  • Kim, Seok;Kim, Tae-Yeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.227-228
    • /
    • 2016
  • Terrestrial laser scanning (TLS) technology is being applied to various fields such as the soil volume calculation and the displacement measurement of terrain, tunnels and dams. This study develops a 3D terrain processing platform for automated earth work using a terrestrial laser scanning data as the software prototype. The developed software provides cells with geo-technical information for planning work to an integrated system.

  • PDF

Design of A Multimedia Bitstream ASIP for Multiple CABAC Standards

  • Choi, Seung-Hyun;Lee, Seong-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.292-298
    • /
    • 2017
  • The complexity of image compression algorithms has increased in order to improve image compression efficiency. One way to resolve high computational complexity is parallel processing. However, entropy coding, which is lossless compression, does not fit into the parallel processing form because of the correlation between consecutive symbols. This paper proposes a new application-specific instruction set processor (ASIP) platform by adding new context-adaptive binary arithmetic coding (CABAC) instructions to the existing platform to quickly process a variety of entropy coding. The newly added instructions work without conflicts with all other existing instructions of the platform, providing the flexibility to handle many coding standards with fast processing speeds. CABAC software is implemented for High Efficiency Video Coding (HEVC) and the performance of the proposed ASIP platform was verified with a field programmable gate array simulation.

A Study on Utility of Open Source Virtual Platform using QEMU (QEMU를 이용한 Open Source Virtual Platform의 효용성 연구)

  • Choi, Byungjun;Suh, Taeweon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.76-78
    • /
    • 2015
  • 시스템 자체를 에뮬레이션 하는 Virtual Platform은 임베디드 시스템 개발 프로세스 과정 중 하나인 소프트웨어 개발의 시점을 앞당길 수 있어 Time-To-Market을 줄일 수 있다. 본 논문에서는 Virtual Platform에 리눅스를 포팅하고 벤치마크 프로그램을 수행하여 성능을 측정하였다. 또한 이를 임베디드 시스템의 실제 개발단계에서 사용되는 Prototype Machine과 완성된 시제품에 각각 매칭 될 수 있는 FPGA 와 PC의 성능과 비교함으로써 Open Source Virtual Platform의 대표 주자인 QEMU의 효용성을 연구하였다. 실험 결과, 전체적인 성능은 PC가 FPGA보다 약 5.27배, FPGA가 Virtual Platform보다 5.38배, PC가 Virtual Platform보다 약 28.36배 더 좋은 성능을 보였다.