Lee, Seong Eun;Moon, Kyung Hwan;Shin, Min Ji;Kim, Byeong Hyeok
Korean Journal of Agricultural and Forest Meteorology
/
v.24
no.2
/
pp.78-82
/
2022
Phenology determines the timing of crop development, and the timing of phenological events is strongly influenced by the temperature during the growing season. In process-based model, leaf area is simulated dynamically by coupling of morphology and phenology module. Therefore, the prediction of leaf appearance rate and final leaf number affects the performance of whole crop model. The dataset for the model equation was collected from SPA R chambers with five different temperature treatments. Beta distribution function (proposed by Yan and Hunt (1999)) was used for describing the leaf appearance rate as a function of temperature. The optimum temperature and the critical value were estimated to be 26.0℃ and 35.3℃, respectively. For evaluation of the model, the accumulated number of onion leaves observed in a temperature gradient chamber was compared with model estimates. The model estimate is the result of accumulating the daily increase in the number of onion leaves obtained by inputting the daily mean temperature during the growing season into the temperature model. In this study, the coefficient of determination (R2) and RMSE value of the model were 0.95 and 0.89, respectively.
Young Sang, Joh;Jaemin, Jung;Shinwoo, Hyun;Kwang Soo, Kim
Korean Journal of Agricultural and Forest Meteorology
/
v.24
no.4
/
pp.256-266
/
2022
Empirical models including the Angstrom-Prescott (AP) model have been used to estimate solar radiation at sites, which would support a wide use of crop models. The objective of this study was to estimate two sets of solar radiation estimates using the AP coefficients derived for climate zone (APFrere) and specific site (APChoi), respectively. The daily solar radiation was estimated at 18 sites in Korea where long-term measurements of solar radiation were available. In the present study, daily solar radiation and sunshine duration were collected for the period from 2012 to 2021. Daily weather data including maximum and minimum temperatures and rainfall were also obtained to prepare input data to a process-based crop model, CERES-Rice model included in Decision Support System for Agrotechnology Transfer (DSSAT). It was found that the daily estimates of solar radiation using the climate zone specific coefficient, SFrere, had significantly less error than those using site-specific coefficients SChoi (p<0.05). The cumulative values of SFrere for the period from march to September also had less error at 55% of study sites than those of SChoi. Still, the use of SFrere and SChoi as inputs to the CERES-Rice model resulted in slight differences between the outcomes of crop growth simulations, which had no significant difference between these outputs. These results suggested that the AP coefficients for the temperate climate zone would be preferable for the estimation of solar radiation. This merits further evaluation studies to compare the AP model with other sophisticated approaches such as models based on satellite data.
Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.
Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed first to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Based on the database entries, we carried out functional analysis of genes encoding histone modifying enzymes. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes is followed by ChIP-seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.
Greenhouse industry has been growing in many countries due to both the advantage of stable year-round crop production and increased demand for fresh vegetables. In greenhouse cultivation, $CO_2$ concentration plays an essential role in the photosynthesis process of crops. Continuous and accurate monitoring of $CO_2$ level in the greenhouse would improve profitability and reduce environmental impact, through optimum control of greenhouse $CO_2$ enrichment and efficient crop production, as compared with the conventional management practices without monitoring and control of $CO_2$ level. In this study, a mathematical model was developed to estimate the $CO_2$ emission from soil as affected by environmental factors in greenhouses. Among various model types evaluated, a linear regression model provided the best coefficient of determination. Selected predictor variables were solar radiation and relative humidity and exponential transformation of both. As a response variable in the model, the difference between $CO_2$ concentrations at the soil surface and 5-cm depth showed are latively strong relationship with the predictor variables. Segmented regression analysis showed that better models were obtained when the entire daily dataset was divided into segments of shorter time ranges, and best models were obtained for segmented data where more variability in solar radiation and humidity were present (i.e., after sun-rise, before sun-set) than other segments. To consider time delay in the response of $CO_2$ concentration, concept of time lag was implemented in the regression analysis. As a result, there was an improvement in the performance of the models as the coefficients of determination were 0.93 and 0.87 with segmented time frames for sun-rise and sun-set periods, respectively. Validation tests of the models to predict $CO_2$ emission from soil showed that the developed empirical model would be applicable to real-time monitoring and diagnosis of significant factors for $CO_2$ enrichment in a soil-based greenhouse.
Hee Jun Lee;Won Seok Lee;In Hyeok Choi;Choong Kwon Lee
Information Systems Review
/
v.22
no.1
/
pp.113-124
/
2020
In the operation of farms, it is very important to evaluate the quality of harvested crops and to classify defective products. However, farmers have difficulty coping with the cost and time required for quality assessment due to insufficient capital and manpower. This study thus aims to detect defects by analyzing the epidermis of fruit using deep learning algorithm. We developed a model that can analyze the epidermis by applying YOLOv3 algorithm based on Region Convolutional Neural Network to video images of peach. A total of four classes were selected and trained. Through 97,600 epochs, a high performance detection model was obtained. The crop failure detection model proposed in this study can be used to automate the process of data collection, quality evaluation through analyzed data, and defect detection. In particular, we have developed an analytical model for peach, which is the most vulnerable to external wounds among crops, so it is expected to be applicable to other crops in farming.
Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.
Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.
Jung, Dae-Hyun;Kim, Hak-Jin;Park, Soo Hyun;Kim, Joon Yong
Proceedings of the Korean Society for Agricultural Machinery Conference
/
2017.04a
/
pp.135-135
/
2017
Greenhouse have been developed to provide the plants with good environmental conditions for cultivation crop, two major factors of which are the inside air temperature and humidity. The inside temperature are influenced by the heating systems, ventilators and for systems among others, which in turn are geverned by some type of controller. Likewise, humidity environment is the result of complex mass exchanges between the inside air and the several elements of the greenhouse and the outside boundaries. Most of the existing models are based on the energy balance method and heat balance equation for modelling the heat and mass fluxes and generating dynamic elements. However, greenhouse are classified as complex system, and need to make a sophisticated modeling. Furthermore, there is a difficulty in using classical control methods for complex process system due to the process are non linear and multi-output(MIMO) systems. In order to predict the time evolution of conditions in certain greenhouse as a function, we present here to use of recurrent neural networks(RNN) which has been used to implement the direct dynamics of the inside temperature and inside humidity of greenhouse. For the training, we used algorithm of a backpropagation Through Time (BPTT). Because the environmental parameters are shared by all time steps in the network, the gradient at each output depends not only on the calculations of the current time step, but also the previous time steps. The training data was emulated to 13 input variables during March 1 to 7, and the model was tested with database file of March 8. The RMSE of results of the temperature modeling was $0.976^{\circ}C$, and the RMSE of humidity simulation was 4.11%, which will be given to prove the performance of RNN in prediction of the greenhouse environment.
Journal of The Korean Society of Agricultural Engineers
/
v.60
no.6
/
pp.43-54
/
2018
The accurate estimation of reference crop evapotranspiration ($ET_o$) is essential in irrigation water management to assess the time-dependent status of crop water use and irrigation scheduling. The importance of $ET_o$ has resulted in many direct and indirect methods to approximate its value and include pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized regression neural network (GRNN), to evaluate their capability to accurately predict $ET_o$ using daily meteorological data. All data were obtained from two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily $ET_o$ was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of $ET_o$ and corresponding meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against $ET_o$ calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and policy makers for effective agricultural water governance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.