• Title/Summary/Keyword: Process-based crop model

Search Result 34, Processing Time 0.022 seconds

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

Design and Development of Web-Based Decision Support Systems for Wheat Management Practices Using Process-Based Crop Model (과정기반 작물모형을 이용한 웹 기반 밀 재배관리 의사결정 지원시스템 설계 및 구축)

  • Kim, Solhee;Seok, Seungwon;Cheng, Liguang;Jang, Taeil;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.17-26
    • /
    • 2024
  • This study aimed to design and build a web-based decision support system for wheat cultivation management. The system is designed to collect and measure the weather environment at the growth stage on a daily basis and predict the soil moisture content. Based on this, APSIM, one of the process-based crop models, was used to predict the potential yield of wheat cultivation in real time by making decisions at each stage. The decision-making system for wheat crop management was designed to provide information through a web-based dashboard in consideration of user convenience and to comprehensively evaluate wheat yield potential according to past, present, and future weather conditions. Based on the APSIM model, the system estimates the current yield using past and present weather data and predicts future weather using the past 40 years of weather data to estimate the potential yield at harvest. This system is expected to be developed into a decision support system for farmers to prescribe irrigation and fertilizer in order to increase domestic wheat production and quality by enhancing the yield estimation model by adding influence factors that can contribute to improving wheat yield.

Agro-Ecosystem Informatics for Rational Crop and Field Management - Remote Sensing, GIS and Modeling -

  • INOUE Yoshio
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.22-46
    • /
    • 2005
  • Spatial and timely information on crop and filed conditions is one of the most important basics for rational and efficient planning and management in agriculture. Remote sensing, GIS, and modeling are powerful tools for such applications. This paper presents an overview of the state of the art in remote sensing of crop and field conditions with some case studies. It is also shown that a synergistic linkage between process-based models and remote sensing signatures enables us to estimate the multiple crop/ecosystem variables at a dynamic mode. Remotely sensed information can greatly reduce the uncertainty of simulation models by compensating for insufficient availability of data or parameters. This synergistic approach allows the effective use of infrequent and multi-source remote sensing data for estimating important ecosystem variables such as biomass growth and ecosystem $CO_2$ flux. This paper also shows a geo-spatial information system that enables us to integrate, search, extract, process, transform, and calculate any part of the data based on ID#, attributes, and/or by river-basin boundary, administrative boundary, or boundaries of arbitrary shape/size all over Japan. A case study using the system demonstrates that the nitrogen load from fertilizer was closely related to nitrate concentration of groundwater. The combined use of remote sensing, GIS and modeling would have great potential for various agro-ecosystem applications.

  • PDF

Leaf Gas-exchange Model Parameterization and Simulation for Estimating Photosynthesis in Onion (양파 광합성 예측을 위한 잎의 기체교환모형 모수 추정)

  • Lee, Seong Eun;Moon, Kyung Hwan;Shin, Min Ji;Oh, Seo Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.233-238
    • /
    • 2020
  • Process-based model (PBM), based on the interactions between endogenous physiological processes and many environmental factors, can be a powerful tool for estimating crop growth and productivity. Carbon acquisition and biomass accumulation are the main components in PBM, so it has become important to understand and integrate gas exchange process in crop model. This study aimed to assess the applicability of FvCB model (a leaf model of C3 photosynthesis proposed by Farquhar, von C aemmerer, and Berry (1980)) in onion (Allium cepa L.). For parameterization, two early-maturing onion cultivars, 'Singsingball' and 'Thunderball', grown in a temperature gradient plastic film house, were used in measuring leaf net CO2 assimilation rate (A), and then, parameter estimation was carried out for four parameters including Vcmax (maximum rate of carboxylation), Jmax (maximum rate of electron transport), TPU (rate of triose phosphate utilization), and Rd (Dark respiration rate). The gas-exchange model calibrated in this research is expected to be able to explain the photosynthetic responses of onion under various environmental conditions (R2=0.95***).

Estimation of Corn and Soybean Yields Based on MODIS Data and CASA Model in Iowa and Illinois, USA

  • Na, Sangil;Hong, Sukyoung;Kim, Yihyun;Lee, Kyoungdo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • The crop growing conditions make accurate predictions of yield ahead of harvest time difficult. Such predictions are needed by the government to estimate, ahead of time, the amount of crop required to be imported to meet the expected domestic shortfall. Corn and soybean especially are widely cultivated throughout the world and a staple food in many regions of the world. On the other hand, the CASA (Carnegie-Ames-Stanford Approach) model is a process-based model to estimate the land plant NPP (Net Primary Productivity) based on the plant growing mechanism. In this paper, therefore, a methodology for the estimation of corn/soybean yield ahead of harvest time is developed specifically for the growing conditions particular to Iowa and Illinois. The method is based on CASA model using MODIS data, and uses Net Primary Productivity (NPP) to predict corn/soybean yield. As a result, NPP at DOY 217 (in Illinois) and DOY 241 (in Iowa) tend to have high correlation with corn/soybean yields. The corn/soybean yields of Iowa in 2013 was estimated to be 11.24/3.55 ton/ha and Illinois was estimated to be 10.09/3.06 ton/ha. Errors were 6.06/17.58% and -10.64/-7.07%, respectively, compared with the yield forecast of the USDA. Crop yield distributions in 2013 were presented to show spatial variability in the state. This leads to the conclusion that NPP changes in the crop field were well reflected crop yield in this study.

Monitoring on Crop Condition using Remote Sensing and Model (원격탐사와 모델을 이용한 작황 모니터링)

  • Lee, Kyung-do;Park, Chan-won;Na, Sang-il;Jung, Myung-Pyo;Kim, Junhwan
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.617-620
    • /
    • 2017
  • The periodic monitoring of crop conditions and timely estimation of crop yield are of great importance for supporting agricultural decision-makings, as well as for effectively coping with food security issues. Remote sensing has been regarded as one of effective tools for crop condition monitoring and crop type classification. Since 2010, RDA (Rural Development Administration) has been developing technology for monitoring on crop condition using remote sensing and model. These special papers address recent state-of-the-art of remote sensing and geospatial technologies for providing operational agricultural information, such as, crop yield estimation methods using remote sensing data and process-oriented model, crop classification algorithm, monitoring and prediction of weather and climate based on remote sensing data,system design and architecture of crop monitoring system, history on rice yield forecasting method.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

History and Future Direction for the Development of Rice Growth Models in Korea (벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Cho, Chongil;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • A process-oriented crop growth model can simulate the biophysical process of rice under diverse environmental and management conditions, which would make it more versatile than an empirical crop model. In the present study, we examined chronology and background of the development of the rice growth models in Korea, which would provide insights on the needs for improvement of the models. The rice crop growth models were introduced in Korea in the late 80s. Until 2000s, these crop models have been used to simulate the yield in a specific area in Korea. Since then, improvement of crop growth models has been made to take into account biological characteristics of rice growth and development in more detail. Still, the use of the crop growth models has been limited to the assessment of climate change impact on crop production. Efforts have been made to apply the crop growth model, e.g., the CERES-Rice model, to develop decision support system for crop management at a farm level. However, the decision support system based on a crop growth model was attractive to a small number of stakeholders most likely due to scarcity of on-site weather data and reliable parameter sets for cultivars grown in Korea. The wide use of the crop growth models would be facilitated by approaches to extend spatial availability of reliable weather data, which could be either measured on-site or estimates using spatial interpolation. New approaches for calibration of cultivar parameters for new cultivars would also help lower hurdles to crop growth models.

Continuous monitoring of the canopy gas exchange of rice and soybean based on the aerodynamic analysis of the plant canopy

  • Tanaka, Yu;Katayama, Hiroto;Kondo, Rintaro;Homma, Koki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.60-60
    • /
    • 2017
  • It is important to measure the gas exchange activity of the crops in canopy scale to understand the process of biomass production and yield formation. Thermal imaging of the canopy surface temperature is a powerful tool to detect the gas exchange activity of the crop canopy. The simultaneous measurement of the canopy temperature and the meteorological data enables us to calculate the canopy diffusive conductance ($g_c$) based on the heat flux model (Monteith et al. 1973, Horie et al. 2006). It is, however, difficult to realize the long-term and continuous monitoring of $g_c$ due to the occurrence of the calculation error caused by the fluctuation of the environmental condition. This is partly because the model assumption is too simple to describe the meteorological and aerodynamic conditions of the crop canopy in the field condition. Here we report the novel method of the direct measurement of the aerodynamic resistance ($r_a$) of the crop canopy, which enables us the stable and continuous measurement of the gas exchange capacity of the crop plants. The modified heat balance model shows the improved performance to quantify $g_c$ under the fluctuating meteorological condition in the field. The relationship between $g_c$ and biomass production of rice and soybean varieties is also discussed in the presentation.

  • PDF