기후변화 영향평가를 위하여 프로세스 작물모형이 많이 이용되고 있지만, FORTRAN, C++, Delphi, Java와 같은 컴퓨터 프로그래밍 언어로 만들어지기 때문에 농학자들이 작물 모형을 제작하는 것이 쉽지 않다. 배추 모형을 개발하기 위해 6 가지 온도 체계를 가진 토양-식물-대기 연구(SPAR) 실험 자료가 사용되었다. SPAR 챔버에서의 식물 재배 기간 동안 잎의 수, 잎의 면적, 식물의 생장률을 6 회 측정 하였다. 또한 휴대용 LI-6400 광합성 측정기를 이용하여 잎의 광합성을 측정 하였다. 잎 수준 광합성 예측은 Farquhar, von Caemmerer 및 Berry (FvCB) 모형을 적용 하였고, 수관의 광합성은 Sun/Shade 모형이 사용되었다. 이러한 전 과정은 BuildIt 이라는 Excel 추가기능이 포함된 엑셀 파일로 제작되었다. 개발된 모형으로 시간 단위의 기상 입력 자료를 사용하여 배추의 광합성, 생장률 및 기타 생리 변수의 변화를 모의할 수 있었으며, 측정된 배추의 건조 중량의 변화와 모형에서 예측된 동화량과는 비례적인 관계를 나타내었으나, 온도에 따라서 다르게 나타났다.
This study aimed to design and build a web-based decision support system for wheat cultivation management. The system is designed to collect and measure the weather environment at the growth stage on a daily basis and predict the soil moisture content. Based on this, APSIM, one of the process-based crop models, was used to predict the potential yield of wheat cultivation in real time by making decisions at each stage. The decision-making system for wheat crop management was designed to provide information through a web-based dashboard in consideration of user convenience and to comprehensively evaluate wheat yield potential according to past, present, and future weather conditions. Based on the APSIM model, the system estimates the current yield using past and present weather data and predicts future weather using the past 40 years of weather data to estimate the potential yield at harvest. This system is expected to be developed into a decision support system for farmers to prescribe irrigation and fertilizer in order to increase domestic wheat production and quality by enhancing the yield estimation model by adding influence factors that can contribute to improving wheat yield.
Spatial and timely information on crop and filed conditions is one of the most important basics for rational and efficient planning and management in agriculture. Remote sensing, GIS, and modeling are powerful tools for such applications. This paper presents an overview of the state of the art in remote sensing of crop and field conditions with some case studies. It is also shown that a synergistic linkage between process-based models and remote sensing signatures enables us to estimate the multiple crop/ecosystem variables at a dynamic mode. Remotely sensed information can greatly reduce the uncertainty of simulation models by compensating for insufficient availability of data or parameters. This synergistic approach allows the effective use of infrequent and multi-source remote sensing data for estimating important ecosystem variables such as biomass growth and ecosystem $CO_2$ flux. This paper also shows a geo-spatial information system that enables us to integrate, search, extract, process, transform, and calculate any part of the data based on ID#, attributes, and/or by river-basin boundary, administrative boundary, or boundaries of arbitrary shape/size all over Japan. A case study using the system demonstrates that the nitrogen load from fertilizer was closely related to nitrate concentration of groundwater. The combined use of remote sensing, GIS and modeling would have great potential for various agro-ecosystem applications.
식물의 생리적 과정과 환경 요인 간 상호작용에 바탕을 둔 프로세스 모형은 작물 생육 및 생산성 예측을 위한 좋은 도구이다. 탄소 획득과 바이오매스 증가는 프로세스 모형 개발의 주요 구성요소로서, 작물모형 내에서 광합성 과정의 이해 및 통합에 중요한 역할을 한다. 본 연구는 1980년 Farquhar 등에 의해 제안된 C3 식물 잎의 광합성 모델인 FvCB 모형의 양파에 대한 적용 가능성 평가 및 적합한 모수 추정을 목표로 수행되었다. 이를 위해 온도구배하우스에서 재배된 조생종 양파 품종인 '싱싱볼'과 '썬더볼'의 광합성 측정 결과를 바탕으로 Vcmax, Jmax, TPU 및 Rd 값을 추정하였다. 본 연구에서 개발된 양파의 기체교환 모형은 다양한 환경 조건에서 양파의 광합성 반응 예측 및 설명에 유용하게 활용될 것으로 기대된다.
The crop growing conditions make accurate predictions of yield ahead of harvest time difficult. Such predictions are needed by the government to estimate, ahead of time, the amount of crop required to be imported to meet the expected domestic shortfall. Corn and soybean especially are widely cultivated throughout the world and a staple food in many regions of the world. On the other hand, the CASA (Carnegie-Ames-Stanford Approach) model is a process-based model to estimate the land plant NPP (Net Primary Productivity) based on the plant growing mechanism. In this paper, therefore, a methodology for the estimation of corn/soybean yield ahead of harvest time is developed specifically for the growing conditions particular to Iowa and Illinois. The method is based on CASA model using MODIS data, and uses Net Primary Productivity (NPP) to predict corn/soybean yield. As a result, NPP at DOY 217 (in Illinois) and DOY 241 (in Iowa) tend to have high correlation with corn/soybean yields. The corn/soybean yields of Iowa in 2013 was estimated to be 11.24/3.55 ton/ha and Illinois was estimated to be 10.09/3.06 ton/ha. Errors were 6.06/17.58% and -10.64/-7.07%, respectively, compared with the yield forecast of the USDA. Crop yield distributions in 2013 were presented to show spatial variability in the state. This leads to the conclusion that NPP changes in the crop field were well reflected crop yield in this study.
농작물 작황 추정은 생산량 예측을 통한 수급 조절, 가격 예측, 농가 소득 보전을 위한 정책 수립 등에 중요한 판단자료로 활용된다. 급변하는 국내외 여건에서 작물의 안정생산과 식량안보, 생태계 지속성 평가를 위해 원격탐사 등 국가차원의 미래기술 개발 노력이 요구되고 있다. 농촌진흥청은 2010년부터 국내외 주요 곡물생산지대 작황 평가를 위한 원격탐사, 작물모형, 농업기상 분야 원천기술 개발을 위해 노력해왔다. 본 특별호는 농촌진흥청에서 지난 8년간 국내외 작황 평가를 위해 수행해 온 원격탐사, 작물모형, 농업기상 분야의 연구개발 성과 및 연계된 이들 분야 간 융복합 연구 수행 현황을 정리하고 향후 연구 방향을 제시하고자 발간하게 되었다.
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.107-114
/
1999
The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.
Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.403-413
/
2022
Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.
작물 생육모형은 기존의 경험적 작물모형과는 달리 벼의 생장과정을 모의 할 수 있는 장점이 있다. 이러한 작물생육 모형들은 80년대 후반부터 적극적으로 국내도입이 이루어 졌다. 유럽에서 개발된 MACROS로 부터 시작하여 이후 Oryza1 및 Oryza2000 모형과 북미에서 개발된 DSSAT 계열의 모형인 CERES-RICE 모형을 도입하게 되었다. 각각의 모형들은 최초에는 단순히 품종수 적합 후 특정지역에의 수량을 모의하는데 활용되었으나 2000년대에 이르러서는 국내에 적합한 작물모형으로 발전시킬 수 있는 단계에 이르게 되었다. 그러나, 작물생육모형을 기후변화 영향평가를 위한 용도로 주로 사용하였고 실용적인 수준에서의 활용은 미미하였다. 일부 농가 적용을 위한 시도가 있었으나 널리 활용되지는 못하였다. 이러한 활용상의 문제점은 기상자료의 공간해상도가 문제가 가장 크며, 그 다음으로는 각 지역별이 품종에 대한 품종모수 자료가 부족하기 때문이다. 이러한 활용상의 문제점을 극복하기 위해서는 기상관측의 공간해상력을 높이기 위한 관측소의 확대 또는 공간 내삽법이 필요할 것으로 생각된다. 또한 신품종이 일정 재배면적 이상 확대될 경우 이에 대해 품종모수를 적합할 제도적 기술적 방법이 필요하다. 작물모형의 활용 확대를 위해서는 기상 또는 토양 분야와도 연결이 필요하다. 이를 위해서는 군락의 증산 속도와 토양모형에 정보가 필요하며 이는 군락 광합성 관련 부분과 토양 특성에 대해서 새로운 접근이 필요함을 의미한다.
한국작물학회 2017년도 9th Asian Crop Science Association conference
/
pp.60-60
/
2017
It is important to measure the gas exchange activity of the crops in canopy scale to understand the process of biomass production and yield formation. Thermal imaging of the canopy surface temperature is a powerful tool to detect the gas exchange activity of the crop canopy. The simultaneous measurement of the canopy temperature and the meteorological data enables us to calculate the canopy diffusive conductance ($g_c$) based on the heat flux model (Monteith et al. 1973, Horie et al. 2006). It is, however, difficult to realize the long-term and continuous monitoring of $g_c$ due to the occurrence of the calculation error caused by the fluctuation of the environmental condition. This is partly because the model assumption is too simple to describe the meteorological and aerodynamic conditions of the crop canopy in the field condition. Here we report the novel method of the direct measurement of the aerodynamic resistance ($r_a$) of the crop canopy, which enables us the stable and continuous measurement of the gas exchange capacity of the crop plants. The modified heat balance model shows the improved performance to quantify $g_c$ under the fluctuating meteorological condition in the field. The relationship between $g_c$ and biomass production of rice and soybean varieties is also discussed in the presentation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.