• 제목/요약/키워드: Process-based crop model

검색결과 34건 처리시간 0.025초

엑셀/VBA를 이용한 배추 모형 제작 (Development of a Chinese cabbage model using Microsoft Excel/VBA)

  • 문경환;송은영;위승환;오순자
    • 한국농림기상학회지
    • /
    • 제20권2호
    • /
    • pp.228-232
    • /
    • 2018
  • 기후변화 영향평가를 위하여 프로세스 작물모형이 많이 이용되고 있지만, FORTRAN, C++, Delphi, Java와 같은 컴퓨터 프로그래밍 언어로 만들어지기 때문에 농학자들이 작물 모형을 제작하는 것이 쉽지 않다. 배추 모형을 개발하기 위해 6 가지 온도 체계를 가진 토양-식물-대기 연구(SPAR) 실험 자료가 사용되었다. SPAR 챔버에서의 식물 재배 기간 동안 잎의 수, 잎의 면적, 식물의 생장률을 6 회 측정 하였다. 또한 휴대용 LI-6400 광합성 측정기를 이용하여 잎의 광합성을 측정 하였다. 잎 수준 광합성 예측은 Farquhar, von Caemmerer 및 Berry (FvCB) 모형을 적용 하였고, 수관의 광합성은 Sun/Shade 모형이 사용되었다. 이러한 전 과정은 BuildIt 이라는 Excel 추가기능이 포함된 엑셀 파일로 제작되었다. 개발된 모형으로 시간 단위의 기상 입력 자료를 사용하여 배추의 광합성, 생장률 및 기타 생리 변수의 변화를 모의할 수 있었으며, 측정된 배추의 건조 중량의 변화와 모형에서 예측된 동화량과는 비례적인 관계를 나타내었으나, 온도에 따라서 다르게 나타났다.

과정기반 작물모형을 이용한 웹 기반 밀 재배관리 의사결정 지원시스템 설계 및 구축 (Design and Development of Web-Based Decision Support Systems for Wheat Management Practices Using Process-Based Crop Model)

  • 김솔희;석승원;청리광;장태일;김태곤
    • 한국농공학회논문집
    • /
    • 제66권4호
    • /
    • pp.17-26
    • /
    • 2024
  • This study aimed to design and build a web-based decision support system for wheat cultivation management. The system is designed to collect and measure the weather environment at the growth stage on a daily basis and predict the soil moisture content. Based on this, APSIM, one of the process-based crop models, was used to predict the potential yield of wheat cultivation in real time by making decisions at each stage. The decision-making system for wheat crop management was designed to provide information through a web-based dashboard in consideration of user convenience and to comprehensively evaluate wheat yield potential according to past, present, and future weather conditions. Based on the APSIM model, the system estimates the current yield using past and present weather data and predicts future weather using the past 40 years of weather data to estimate the potential yield at harvest. This system is expected to be developed into a decision support system for farmers to prescribe irrigation and fertilizer in order to increase domestic wheat production and quality by enhancing the yield estimation model by adding influence factors that can contribute to improving wheat yield.

Agro-Ecosystem Informatics for Rational Crop and Field Management - Remote Sensing, GIS and Modeling -

  • INOUE Yoshio
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2005년도 국제학술회의
    • /
    • pp.22-46
    • /
    • 2005
  • Spatial and timely information on crop and filed conditions is one of the most important basics for rational and efficient planning and management in agriculture. Remote sensing, GIS, and modeling are powerful tools for such applications. This paper presents an overview of the state of the art in remote sensing of crop and field conditions with some case studies. It is also shown that a synergistic linkage between process-based models and remote sensing signatures enables us to estimate the multiple crop/ecosystem variables at a dynamic mode. Remotely sensed information can greatly reduce the uncertainty of simulation models by compensating for insufficient availability of data or parameters. This synergistic approach allows the effective use of infrequent and multi-source remote sensing data for estimating important ecosystem variables such as biomass growth and ecosystem $CO_2$ flux. This paper also shows a geo-spatial information system that enables us to integrate, search, extract, process, transform, and calculate any part of the data based on ID#, attributes, and/or by river-basin boundary, administrative boundary, or boundaries of arbitrary shape/size all over Japan. A case study using the system demonstrates that the nitrogen load from fertilizer was closely related to nitrate concentration of groundwater. The combined use of remote sensing, GIS and modeling would have great potential for various agro-ecosystem applications.

  • PDF

양파 광합성 예측을 위한 잎의 기체교환모형 모수 추정 (Leaf Gas-exchange Model Parameterization and Simulation for Estimating Photosynthesis in Onion)

  • 이성은;문경환;신민지;오서영
    • 한국농림기상학회지
    • /
    • 제22권4호
    • /
    • pp.233-238
    • /
    • 2020
  • 식물의 생리적 과정과 환경 요인 간 상호작용에 바탕을 둔 프로세스 모형은 작물 생육 및 생산성 예측을 위한 좋은 도구이다. 탄소 획득과 바이오매스 증가는 프로세스 모형 개발의 주요 구성요소로서, 작물모형 내에서 광합성 과정의 이해 및 통합에 중요한 역할을 한다. 본 연구는 1980년 Farquhar 등에 의해 제안된 C3 식물 잎의 광합성 모델인 FvCB 모형의 양파에 대한 적용 가능성 평가 및 적합한 모수 추정을 목표로 수행되었다. 이를 위해 온도구배하우스에서 재배된 조생종 양파 품종인 '싱싱볼'과 '썬더볼'의 광합성 측정 결과를 바탕으로 Vcmax, Jmax, TPU 및 Rd 값을 추정하였다. 본 연구에서 개발된 양파의 기체교환 모형은 다양한 환경 조건에서 양파의 광합성 반응 예측 및 설명에 유용하게 활용될 것으로 기대된다.

Estimation of Corn and Soybean Yields Based on MODIS Data and CASA Model in Iowa and Illinois, USA

  • Na, Sangil;Hong, Sukyoung;Kim, Yihyun;Lee, Kyoungdo
    • 한국토양비료학회지
    • /
    • 제47권2호
    • /
    • pp.92-99
    • /
    • 2014
  • The crop growing conditions make accurate predictions of yield ahead of harvest time difficult. Such predictions are needed by the government to estimate, ahead of time, the amount of crop required to be imported to meet the expected domestic shortfall. Corn and soybean especially are widely cultivated throughout the world and a staple food in many regions of the world. On the other hand, the CASA (Carnegie-Ames-Stanford Approach) model is a process-based model to estimate the land plant NPP (Net Primary Productivity) based on the plant growing mechanism. In this paper, therefore, a methodology for the estimation of corn/soybean yield ahead of harvest time is developed specifically for the growing conditions particular to Iowa and Illinois. The method is based on CASA model using MODIS data, and uses Net Primary Productivity (NPP) to predict corn/soybean yield. As a result, NPP at DOY 217 (in Illinois) and DOY 241 (in Iowa) tend to have high correlation with corn/soybean yields. The corn/soybean yields of Iowa in 2013 was estimated to be 11.24/3.55 ton/ha and Illinois was estimated to be 10.09/3.06 ton/ha. Errors were 6.06/17.58% and -10.64/-7.07%, respectively, compared with the yield forecast of the USDA. Crop yield distributions in 2013 were presented to show spatial variability in the state. This leads to the conclusion that NPP changes in the crop field were well reflected crop yield in this study.

원격탐사와 모델을 이용한 작황 모니터링 (Monitoring on Crop Condition using Remote Sensing and Model)

  • 이경도;박찬원;나상일;정명표;김준환
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.617-620
    • /
    • 2017
  • 농작물 작황 추정은 생산량 예측을 통한 수급 조절, 가격 예측, 농가 소득 보전을 위한 정책 수립 등에 중요한 판단자료로 활용된다. 급변하는 국내외 여건에서 작물의 안정생산과 식량안보, 생태계 지속성 평가를 위해 원격탐사 등 국가차원의 미래기술 개발 노력이 요구되고 있다. 농촌진흥청은 2010년부터 국내외 주요 곡물생산지대 작황 평가를 위한 원격탐사, 작물모형, 농업기상 분야 원천기술 개발을 위해 노력해왔다. 본 특별호는 농촌진흥청에서 지난 8년간 국내외 작황 평가를 위해 수행해 온 원격탐사, 작물모형, 농업기상 분야의 연구개발 성과 및 연계된 이들 분야 간 융복합 연구 수행 현황을 정리하고 향후 연구 방향을 제시하고자 발간하게 되었다.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향 (History and Future Direction for the Development of Rice Growth Models in Korea)

  • 김준환;상완규;신평;백재경;조정일;서명철
    • 한국농림기상학회지
    • /
    • 제21권3호
    • /
    • pp.167-174
    • /
    • 2019
  • 작물 생육모형은 기존의 경험적 작물모형과는 달리 벼의 생장과정을 모의 할 수 있는 장점이 있다. 이러한 작물생육 모형들은 80년대 후반부터 적극적으로 국내도입이 이루어 졌다. 유럽에서 개발된 MACROS로 부터 시작하여 이후 Oryza1 및 Oryza2000 모형과 북미에서 개발된 DSSAT 계열의 모형인 CERES-RICE 모형을 도입하게 되었다. 각각의 모형들은 최초에는 단순히 품종수 적합 후 특정지역에의 수량을 모의하는데 활용되었으나 2000년대에 이르러서는 국내에 적합한 작물모형으로 발전시킬 수 있는 단계에 이르게 되었다. 그러나, 작물생육모형을 기후변화 영향평가를 위한 용도로 주로 사용하였고 실용적인 수준에서의 활용은 미미하였다. 일부 농가 적용을 위한 시도가 있었으나 널리 활용되지는 못하였다. 이러한 활용상의 문제점은 기상자료의 공간해상도가 문제가 가장 크며, 그 다음으로는 각 지역별이 품종에 대한 품종모수 자료가 부족하기 때문이다. 이러한 활용상의 문제점을 극복하기 위해서는 기상관측의 공간해상력을 높이기 위한 관측소의 확대 또는 공간 내삽법이 필요할 것으로 생각된다. 또한 신품종이 일정 재배면적 이상 확대될 경우 이에 대해 품종모수를 적합할 제도적 기술적 방법이 필요하다. 작물모형의 활용 확대를 위해서는 기상 또는 토양 분야와도 연결이 필요하다. 이를 위해서는 군락의 증산 속도와 토양모형에 정보가 필요하며 이는 군락 광합성 관련 부분과 토양 특성에 대해서 새로운 접근이 필요함을 의미한다.

Continuous monitoring of the canopy gas exchange of rice and soybean based on the aerodynamic analysis of the plant canopy

  • Tanaka, Yu;Katayama, Hiroto;Kondo, Rintaro;Homma, Koki;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.60-60
    • /
    • 2017
  • It is important to measure the gas exchange activity of the crops in canopy scale to understand the process of biomass production and yield formation. Thermal imaging of the canopy surface temperature is a powerful tool to detect the gas exchange activity of the crop canopy. The simultaneous measurement of the canopy temperature and the meteorological data enables us to calculate the canopy diffusive conductance ($g_c$) based on the heat flux model (Monteith et al. 1973, Horie et al. 2006). It is, however, difficult to realize the long-term and continuous monitoring of $g_c$ due to the occurrence of the calculation error caused by the fluctuation of the environmental condition. This is partly because the model assumption is too simple to describe the meteorological and aerodynamic conditions of the crop canopy in the field condition. Here we report the novel method of the direct measurement of the aerodynamic resistance ($r_a$) of the crop canopy, which enables us the stable and continuous measurement of the gas exchange capacity of the crop plants. The modified heat balance model shows the improved performance to quantify $g_c$ under the fluctuating meteorological condition in the field. The relationship between $g_c$ and biomass production of rice and soybean varieties is also discussed in the presentation.

  • PDF