• 제목/요약/키워드: Process pressure

검색결과 6,592건 처리시간 0.031초

이젝터를 적용한 팽창기체 흡입 냉동시스템의 성능향상 해석 연구 (Theoretical study on the performance improvement of refrigeration system installed with ejector entraining expansion gases after expansion process)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.828-833
    • /
    • 2014
  • 본 연구는 이젝터 팽창기를 적용한 냉동기에서 팽창한 냉매가 액기분리기에 포집된 후, 이 중 포화기체의 일부는 이젝터로 재흡입되고, 포화액체는 증발기에 유입되어 증발된 후 액기분리기의 잔여 기체와 혼합되어 압축되는 공정을 고안하여 특성을 해석하였다. 본 공정의 특성은 이젝터에서 등엔트로피 팽창 후 액체량의 증가로 냉동능력이 증가하고, 압축기에 유입되는 기체의 압력이 상승하게 되어 압축일이 감소함으로써 효율이 증가하게 된다. 냉매 R134a를 적용하는 냉장고 시스템과 본 고안 시스템을 비교한 결과, 이젝터에서 압력이 65% 저하될 때 COP는 27.8%가 증가된 최대값이 되었다. 다른 냉매의 경우 R401A가 75% 압력강하에서 40.1%의 COP 증가를 보였다. 이젝터의 디퓨져에서의 압력 상승율이 20%~60%까지 변화될 때, COP 증가율은 2.6%~3%로 영향이 매우 적었다.

고로쇠 나무의 수피와 수액의 향장활성 비교 (Comparison on Cosmetic Activities of Acer mono Bark and Sap)

  • 서용창;김지선;최운용;조정섭;임혜원;윤창순;마충제;이현용
    • 한국약용작물학회지
    • /
    • 제19권4호
    • /
    • pp.264-270
    • /
    • 2011
  • In this study, we investigated the cosmetic application of Acer mono sap through an ultra-high pressure process. Exposing Acer mono sap to a ultra-high pressure process resulted in 90.1% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration. Acer mono sap also showed the hightest free radical scavenging activity after the ultra high pressure process. The melanogenesis inhibition rate in cloned M-3 cells was 59.0%. Tyrosinase was inhibited at a rate of 87.2% by adding 100% HPAMS. Anti-wrinkle activity was 78.1%. Acer mono sap showed enhanced storage following the ultra high pressure process. These results indicate that Acer mono sap may be a source for functional cosmetic agents capable of improving antioxidant, whitening, and antiwrinkling effects.

진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제 (Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique)

  • 박상후;임태우;양동열;공홍진;이광섭
    • 폴리머
    • /
    • 제28권4호
    • /
    • pp.305-313
    • /
    • 2004
  • 본 연구는 나노 복화공정을 이용하여 마이크로 혹은 나노공정에 응용이 가능한 형상모형 제작공정 개발과 폴리디메틸실록산 (polydimethylsiloxane)를 이용하여 만들어진 형상모형의 몰드로 나노급 정밀도의 폴리디메틸실록산 형상을 복제하는 공정에 관한 것이다. 본 연구에서 제안한 나노 복화공정은 복잡한 형상모형 (pattern)이나 2차원 형상을 CAD 파일 없이 비트맵 그림파일을 이용하여 직접적으로 200nm 정밀도를 가지는 형상으로 만들 수 있다. 형상모형은 펨토초 레이저를 이용하여 이광자 흡수 중합법으로 제작하기 때문에 형상의 정밀도는 레이저 범의 회절한계 이하로 얻을 수 있다. 이렇게 제작된 마스터 형상모형은 본 연구에서 제안한 진공압력차이법으로 폴리디메틸실록산 몰드를 제작하여 기존의 제작방법에 비하여 정밀한 제작이 가능함을 보였으며 또한 제작된 몰드를 이용하여 양각의 플리디메틸실록산 스탬프를 제작하였다.

Coupled solid and fluid mechanics simulation for estimating optimum injection pressure during reservoir CO2-EOR

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid;Barati, Sharif
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.37-57
    • /
    • 2016
  • Reservoir geomechanics can play an important role in hydrocarbon recovery mechanism. In $CO_2$-EOR process, reservoir geomechanics analysis is concerned with the simultaneous study of fluid flow and the mechanical response of the reservoir under $CO_2$ injection. Accurate prediction of geomechanical effects during $CO_2$ injection will assist in modeling the Carbon dioxide recovery process and making a better design of process and production equipment. This paper deals with the implementation of a program (FORTRAN 90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. A geomechanics reservoir partially coupled approach is presented that allows to iteratively take the impact of geomechanics into account in the fluid flow calculations and therefore performs a better prediction of the process. The proposed approach is illustrated on a realistic field case. The reservoir geomechanics coupled models show that in the case of lower maximum bottom hole injection pressure, the cumulative oil production is more than other scenarios. Moreover at the high injection pressures, the production rates will not change with the injection bottom hole pressure variations. Also the FEM analysis of the reservoir showed that at $CO_2$ injection pressure of 11000 Psi the plastic strain has been occurred in the some parts of the reservoir and the related stress path show a critical behavior.

Ultrafiltration of palm oil mill effluent: Effects of operational pressure and stirring speed on performance and membranes fouling

  • Yunos, Khairul Faezah Md;Mazlan, Nurul Ain;Naim, Mohd Nazli Mohd;Baharuddin, Azhari Samsu;Hassan, Abdul Rahman
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.263-270
    • /
    • 2019
  • Palm oil mill effluent (POME) is the largest pollutant discharged into the rivers of Malaysia. Thus UF membrane study was conducted to investigate the effect of pressure and stirring speed on performance of POME treatment and fouling of membrane. Two types of membrane polyethersulfone (PES) and regenerated cellulose (RC) with molecular weight cut-off (MWCO) 5 and 10 kDa were used in this study. Results showed that, as pressure increased, fouling increased however permeate quality improved, the best pressure was 1.0 bar, where the fouling was not too high and produce good permeate quality. As stirring speed increased, fouling reduced and permeate quality improved, however, when stirring speed increased from 600 rpm to 800 rpm, there was no significant improvement on the permeate quality. Therefore, the best condition was at 1.0 bar and 600 rpm. PES membrane with MWCO 5 kDa showed the best permeate quality, even fouling slightly higher than RC membrane. The permeate quality obtained were analyzed in term of dissolved solid, turbidity, suspended solid, biological oxygen demand ($BOD_5$) and chemical oxygen demand (COD) were 538 mg/L, 1.02 NTU, < 25 mg/L, 27.7 mg/L and 62.8 mg/L, respectively with dominant type of fouling is cake resistance. Thus, it can be concluded water reuse standard was successfully achieved in terms of $BOD_5$ and suspended solid.

욕창, 낙상예방 및 통증간호의 간호과정 적용 평가도구 개발 (Development of Performance Measures Based on the Nursing Process for Prevention and Management of Pressure Ulcers, Falls and Pain)

  • 김금순;김진아;김문숙;김유정;김을순;박광옥;송말순;이영희;이인옥;정연이;최윤경
    • 임상간호연구
    • /
    • 제15권1호
    • /
    • pp.133-147
    • /
    • 2009
  • Purpose: This study was conducted to construct evidence based clinical guidelines and to develop nursing process based performance measures for prevention and management of pressure ulcers, falls and pain. Method: Clinical guidelines were drafted through a comprehensive review of relevant literature, national guidelines and hospital protocols. The proposed guidelines were reviewed by a panel of experts and 90 hospital nurses, and refined on the basis of their suggestions. Nursing process based performance measures were developed based on the clinical guidelines and content validity was examined by surveys from 90 hospital nurses. Results: All items, except timetable for position change and pressure ulcer nursing record, in the guidelines for prevention and management of pressure ulcer were appropriate. Most items, except fall risk assessment tools, were appropriate for the guidelines of fall prevention. All other items, except the purpose of pain management, were appropriate for the guidelines of pain management. Performance measures developed in this study were acceptable as a tool to evaluate quality of nursing care. Conclusion: Nursing process based performance measures provide important indicators to monitor whether necessary nursing care is implemented and can be used as the primary resources to improve quality of nursing services.

직사각형 리튬 이온 전지의 일체형 안전장치 제조 공정에 관한 연구 (Manufacturing Integral Safety Vents in Prismatic Lithium-ion Batteries)

  • 김정훈;이경훈;임영진;김병민
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.293-298
    • /
    • 2015
  • A safety vent is crucial to protect its user from unpredictable explosions caused by increasing internal pressure of the lithium-ion batteries. In order to prevent the explosion of the battery, a safety vent rupture is required when the internal pressure reaches a critical value. In conventional manufacturing, the cap plate and the safety vent are fabricated separately and subsequently welded to each other. In the current study, a manufacturing process including a backward extrusion and coining process is suggested to produce an integral safety vent which also has the benefit of increasing production efficiency. FE simulations were conducted to predict the rupture pressure and to design the safety vent using a ductile fracture criterion and the element deletion method. The critical value, C, in the ductile fracture criterion was obtained from uniaxial tensile tests with an annealed sheet of 1050-H14 aluminum alloy. Rupture tests were preformed to measure the rupture pressure of the safety vent. The results met the required rupture pressure within 8.5±0.5 kgf/cm2. The simulation results were compared with experimental results, which showed that the predicted rupture pressures are in good agreement with experimentally measured ones with a maximum error of only 3.9%.

용탕단조법으로 제조된 $Al_2O_3/AC4C$ 복합재료의 피로균열 전파거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior of $Al_2O_3/AC4C$ Composites Made by Squeeze Casting Process)

  • 여인동;이지환
    • 한국주조공학회지
    • /
    • 제15권4호
    • /
    • pp.388-396
    • /
    • 1995
  • This study has been conducted with the purpose of examining the fatigue crack growth characteristics of $Al_2O_3$ short fiber reinforced aluminum matrix composites made by squeeze casting process with different applied pressure and binder amount. Fatigue crack growth experiments have been performed under constant load amplitude method with a fixed load ratio. The rate of crack propagation was decreased with binder amount as well as applied pressure. Also fatigue crack growth path in matrix was changed from flat to rough mode with an increase of applied pressure. In the composites, fatigue crack was propagated to interface between matrix and reinforcement at 10MPa, but it was propagated to reinforcement at 20MPa. The major reason of thee result was considered that interfacial bonding force and microstructure of matrix were improved due to an increase of applied pressure. Localized ductile striation in the composites was observed at low growth rate region and such a phenominon was remarkable with an increase of applied pressure. At high growth rate region, the propensity of fracture appearance was changed from interfacial debonding to reinforcement fracture with an increase of applied pressure.

  • PDF

마이크로핀관의 확관 전후 열전달 및 압력강하 변화 특성에 관한 연구 (Evaporation Heat Transfer and Pressure Drop in Micro-Fin Tubes Before and After Tube-Expansion)

  • 황윤욱;김민수
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.29-38
    • /
    • 2004
  • The objective of this study is to investigate the pressure drop and heat transfer characteristics of the micro-fin tubes before and after the tube-expansion process. Test tubes are single-grooved micro-fin tubes made of copper with an outer diameter of 9.52 mm before the tube-expansion. The direct heating method is applied in order to make the refrigerant evaporated in the micro-fin tubes. The test ranges of the heat flux, mass flux, and the saturation pressure are 5 to 15kW/$m^2$, 100 to 200 kg/$m^2s$ and 540 to 790 kPa, respectively. The effects of the mass flux, heat flux, and the saturation pressure of the refrigerant on the pressure drop and the heat transfer are presented for the refrigerant R22. In the test conditions of this study, the heat transfer coefficient for the micro-fin tube after the tube-expansion is about 16.5% smaller than that before the tube-expansion because the fin height of micro-fin is reduced and the fin shape becomes flatter. The micro-fin tube after the tube-expansion has about 7.7% greater average pressure drop than that before the tube-expansion process.

  • PDF

스퍼터링 공정 압력이 InZnO 박막트랜지스터의 광학 및 전기적 특성에 미치는 영향 (Effect of Sputtering Working Pressure on the Optical and Electrical Properties of InZnO Thin-Film Transistors)

  • 박지민;김형도;장성철;김현석
    • 한국재료학회지
    • /
    • 제30권4호
    • /
    • pp.211-216
    • /
    • 2020
  • Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors, because of their relatively low mobility, have limits in attempts to fulfill high-end specifications for display backplanes. In-Zn-O (IZO) is a promising semiconductor material for high mobility device applications with excellent transparency to visible light region and low temperature process capability. In this paper, the effects of working pressure on the physical and electrical properties of IZO films and thin film transistors are investigated. The working pressure is modulated from 2 mTorr to 5 mTorr, whereas the other process conditions are fixed. As the working pressure increases, the extracted optical band gap of IZO films gradually decreases. Absorption coefficient spectra indicate that subgap states increase at high working pressure. Furthermore, IZO film fabricated at low working pressure shows smoother surface morphology. As a result, IZO thin film transistors with optimum conditions exhibit excellent switching characteristics with high mobility (≥ 30㎠/Vs) and large on/off ratio.