Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.4.211

Effect of Sputtering Working Pressure on the Optical and Electrical Properties of InZnO Thin-Film Transistors  

Park, Ji-Min (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyoung-Do (Department of Materials Science and Engineering, Chungnam National University)
Jang, Seong Cheol (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.4, 2020 , pp. 211-216 More about this Journal
Abstract
Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors, because of their relatively low mobility, have limits in attempts to fulfill high-end specifications for display backplanes. In-Zn-O (IZO) is a promising semiconductor material for high mobility device applications with excellent transparency to visible light region and low temperature process capability. In this paper, the effects of working pressure on the physical and electrical properties of IZO films and thin film transistors are investigated. The working pressure is modulated from 2 mTorr to 5 mTorr, whereas the other process conditions are fixed. As the working pressure increases, the extracted optical band gap of IZO films gradually decreases. Absorption coefficient spectra indicate that subgap states increase at high working pressure. Furthermore, IZO film fabricated at low working pressure shows smoother surface morphology. As a result, IZO thin film transistors with optimum conditions exhibit excellent switching characteristics with high mobility (≥ 30㎠/Vs) and large on/off ratio.
Keywords
amorphous oxide semiconductor; thin film transistors; InZnO; magnetron sputtering; high mobility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J. B. Seon, S. J. Seo, S. J. Kim, E. H. Lee, J. G. Chung, H. G. Lee, S. G. Han, M. K. Ryu, S. Y. Lee and K. N. Kim, Sci. Rep., 3, 1459 (2013).   DOI
2 H. D. Kim, J. H. Kim, K. Park, Y. C. Park, S. K. Kim, Y. J. Kim, J. Park and H. S. Kim, ACS Appl. Mater. Interfaces, 10, 15873 (2018).   DOI
3 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature, 432, 488 (2004).   DOI
4 H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006).   DOI
5 S. H. Park, M. K. Ryu, S. H. Yang, C. W. Byun, C. S. Hwang, K. I. Cho, W. B. Im, Y. E. Kim, T. S. Kim, Y. B. Ha and K. B. Kim, SID Symp. Digest Tech. Pap., 41, 245 (2010).
6 J. S. Park, H. Kim and I. D. Kim, J. Electroceramics, 32, 117 (2014).   DOI
7 N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang and J. F. Wager, J. Appl. Phys., 97, 064505 (2005).   DOI
8 E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves and R. Mertins, Phys. Status Solidi RRL, 1, R34-R36 (2007).   DOI
9 P, Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins and E. Fortunato, J. Non-Cryst. Solids, 352, 1749 (2006).   DOI
10 J. W. Choi, J. H. Park, K. H. Lim, N. K. Cho, J. W. Lee, S. H. Jeon and Y. S. Kim, Appl. Phys. Lett., 109, 132105 (2016).   DOI
11 W. Kim, S. H. Lee, J. H. Bang, H. S. Uhm and J. S. Park, Thin Solid Films, 520, 1475 (2011).   DOI
12 W. T. Lim, Y. L. Wang, F. Ren, D. P. Norton, I. I. Kravchenko, J. M. Zavada and S. J. Pearton, Appl. Surf. Sci., 254, 2878 (2008).   DOI
13 S. Y. Ahn, K. Park, D. H. Choi, J. Park, Y. J. Kim and H. S. Kim, Electronics, 8, 1099 (2019).   DOI
14 S. H. Kim, J. H. Yoon, S. H. Jin, J. H. Bang and P. K. Song, Coatings, 9, 485 (2019).   DOI
15 D. G. Yang, H. D. Kim, J. H. Kim, S. W. Lee, J. Park, Y. J. Kim and H. S. Kim, Thin Solid Films, 638, 361 (2017).   DOI
16 D. A. Loch, A. P. Ehiasarian, Surf. Coat. Technol., 327, 200 (2017).   DOI
17 J. R. Raja, K. S. Jang, H. H. Nguyen, T. T. Trinh, W. J. Choi and J. S. Yi, Curr. Appl. Phys., 13, 246 (2013).   DOI