A Study on Policy-making, Leadership and Improvement of Professionalism for Audiovisual Archives Management in Korea (국내 시청각 기록관리 정책 리더십 및 전문성 제고 방안 연구)
-
- The Korean Journal of Archival Studies
- /
- no.72
- /
- pp.91-163
- /
- 2022
The focus of this paper lies on the fact that the 'management' and 'utilization' of audiovisual archives are still not specialized in both the public and the private sectors. The use of online video platforms including 'YouTube' has became common. Accordingly the production and collection of high-definition and high-capacity audiovisual archives has been rapidly increasing. However, it also emphasizes that there are no references or principles in the current Public Records Act and its enforcement rules, public standards, and guidelines. This paper ultimately examines the provisions that are related to audiovisual archives of the current Public Records Act, which needed to be revised and enacted due to the lack of an audiovisual archives management manual of national institutions, public broadcasters, and organizations can refer to. In addition, this study tries to find out what kind of systems and guidelines are used in audiovisual archives management. This paper examines the current state of standardization of audiovisual records of the National Archives. It also analyses the systems and the guidelines methodically for efficient audiovisual record management in the public records management sector. It suggests the new direction of relevant public standards and guidelines through this research. Futhermore, it measures to activate the audiovisual management policy-making functions of the National Archives. The necessity of establishing a Public Audiovisual Archives as an organization was also reviewed in this paper. The Public Audiovisual Archives will collect Public Audio and Videos systematically and comprehensively through the legal deposit system. And it will be operated by the management and the utilization system so that it can be used for public as a collective memory. Finally, it will takes a charge of a professional role in audiovisual record management field, such as technology standardization to safeguard and protect the copyrights through this process.
For the actors on video, facial expression acting can easily become 'forced facial expression' or 'over-acting'. Also, if self-restraint is emphasized too much, then it becomes 'flat acting' with insufficient emotions. By bringing forth questions in regard to such facial expression acting methods, this study analyzed the facial expression acting of the actors in genre dramas with strong commercial aspects. In conclusion, the facial expression acting methods of the actors in genre dramas were being conducted in a typical way. This means that in visual conventions of video acting, the aesthetic standard has become the important standard in the facial expression acting of the actors. In genre dramas, the emotions of the characters are often revealed in close-up shots. Within the close-up shot, the most important expressive medium in a 'zoomed-in face' is the 'pupil of the eye', and emotions are mostly expressed through the movements of the eye and muscles around it. The second most important expressive medium is the 'mouth'. The differences in the degree of opening and closing the mouth convey diverse emotions along with the expression of the 'eye'. In addition, tensions in the facial muscles greatly hinder the expression of emotions, and the movement of facial muscles must be minimized to prevent excessive wrinkles from forming on the surface of the face. Facial expressions are not completed just with the movement of the muscles. Ultimately, the movement of the muscle is the result of emotions. Facial expression acting takes place after having emotional feelings. For this, the actor needs to go through the process of 'personalization' of a character, such as 'emotional memory', 'concentration' and 'relaxation' which are psychological acting techniques of Stanislavsky. Also, the characteristics of close-up shots that visually reveal the 'inner world' should be recognized. In addition, it was discovered that the facial expression acting is the reaction acting that provides the important point in the unfolding of narratives, and that the method of facial expression and the size of the shots required for the actors are different depending on the roles of main and supporting characters.
Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.
Purpose: Recently, most hospitals are introducing the PACS system and use of the system continues to expand. But small-scaled PACS called MicroPACS has already been in use through open source programs. The aim of this study is to prove utility of operating a MicroPACS, as a substitute back-up device for conventional storage media like CDs and DVDs, in addition to the full-PACS already in use. This study contains the way of setting up a MicroPACS with open source programs and assessment of its storage capability, stability, compatibility and performance of operations such as "retrieve", "query". Materials and Methods: 1. To start with, we searched open source software to correspond with the following standards to establish MicroPACS, (1) It must be available in Windows Operating System. (2) It must be free ware. (3) It must be compatible with PET/CT scanner. (4) It must be easy to use. (5) It must not be limited of storage capacity. (6) It must have DICOM supporting. 2. (1) To evaluate availability of data storage, we compared the time spent to back up data in the open source software with the optical discs (CDs and DVD-RAMs), and we also compared the time needed to retrieve data with the system and with optical discs respectively. (2) To estimate work efficiency, we measured the time spent to find data in CDs, DVD-RAMs and MicroPACS. 7 technologists participated in this study. 3. In order to evaluate stability of the software, we examined whether there is a data loss during the system is maintained for a year. Comparison object; How many errors occurred in randomly selected data of 500 CDs. Result: 1. We chose the Conquest DICOM Server among 11 open source software used MySQL as a database management system. 2. (1) Comparison of back up and retrieval time (min) showed the result of the following: DVD-RAM (5.13,2.26)/Conquest DICOM Server (1.49,1.19) by GE DSTE (p<0.001), CD (6.12,3.61)/Conquest (0.82,2.23) by GE DLS (p<0.001), CD (5.88,3.25)/Conquest (1.05,2.06) by SIEMENS. (2) The wasted time (sec) to find some data is as follows: CD (
Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70