• 제목/요약/키워드: Process heat

검색결과 5,853건 처리시간 0.028초

고속 CNC선반용 공랭식 오일 냉각기 개발 (Development of a Oil-Cooler for High-Speed CNC Lathe)

  • 염만오
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.11-16
    • /
    • 2003
  • Recently, CNC lathe is in need of higher speed for precision works. So more intensive and compact heat exchanger is necessary to cool down the heat in short time from drills and works during high speed working. In this study, to increase heat transfer coefficient per unit volume, inner groove tube is designed and compact oil cooler, 57% volume of conventional type, is manufactured. The heat transfer performance is experimented and is compared with the performance of conventional type.

  • PDF

법랑코팅 열교환기에서 고온 소성공정에 따른 열전달 및 열응력에 관한 연구 (Numerical Study of Heat Transfer Characteristics and Thermal Stress for Enamel coating Heat Exchanger in High Temperature Firing Process)

  • 최훈기;임윤승;이종욱
    • 융합정보논문지
    • /
    • 제10권2호
    • /
    • pp.82-88
    • /
    • 2020
  • 본 연구는 화공용 열교환기에서 법랑코팅 적용을 위한 고온의 소성 공정조건 최적화에 대한 기초자료를 얻고자 하는데 그 목적이 있다. Shell & Tube 형태인 열교환기에 법랑코팅 적용을 위해 소성온도를 순차적으로 높이는 방안에 대해 검토하였다. 소성로 내부에서 열교환기의 온도분포에 대해 CFD 상용 프로그램으로 수치계산하여 구한 온도를 하중조건으로 열응력 해석을 수행하는 연성 해석(FSI) 방식을 이용하여 열교환기의 구조 안전성에 미치는 영향을 확인하였다. 수치해석 및 실험결과 상온의 열교환기를 바로 860℃도의 소성로에 넣으면 열교환기의 국부적 온도차로 인한 구조 안전성에 문제가 발생하므로 온도차를 줄이기 위한 예열 과정이 필요하다. 소성공정 단계가 적은 Case2와 같이 1단계 예열온도 445℃, 2단계 소성온도 860℃가 가장 적합한 것으로 판단된다.

공정안전관리 사업장의 열매체유 사용실태에 관한 연구 (A Study on the Actual Status of Heat Transfer oils in Industries for Process Safety Management)

  • 이근원;이주엽
    • 한국가스학회지
    • /
    • 제18권5호
    • /
    • pp.33-39
    • /
    • 2014
  • 열매체유는 화학플랜트의 가열시스템, 열교환시스템, 특정한 가스공정, 사출성형 시스템 및 펄프 제지공정에 사용되고 있다. 열매체유는 열적 산화 분해에 잘 견디며 안전성이 뛰어나며, 열매체유가 누출이나 분출의 경우에는 점화원이 있을때 쉽게 점화된다. 본 연구에서는 공정안전관리 사업장의 화재 폭발 사고를 예방하기 위해서 열매체유의 사용 실태조사를 통해 안전관리 상태를 고찰하였다. 사업장의 공정시스템에서 사용된 열매체유의 사용실태는 개발된 설문지에 의해서 조사되었다. 본 연구 결과는 열매체유의 관리나, 열매체유 공정의 안전한 운전과 유지와 관련된 화재 폭발 사고 예방을 위한 안전관리 대책 수립에 활용될 수 있을 것이다.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향 (Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials)

  • 배동현;정수정;조영래;정원섭;정호신;강창룡;배동수
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화 (Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process)

  • 엄동환;박노진
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.

강재 열처리용 다점 열유속 측정 기술 개발 (Development of Multi-point Heat Flux Measurement for Steel Quenching)

  • 이정호;오동욱;도규형;김태훈
    • 열처리공학회지
    • /
    • 제25권4호
    • /
    • pp.181-189
    • /
    • 2012
  • The demand on quantitative measurement of the heat flux is motivated in making higher-quality steel product through a water quenching process of plate mill. To improve a spatial degree of heat flux measurement, the multi-point heat flux measurement was carried out by a unique experimental technique that has a combination of the existing single-point heat flux gauge. The corresponding heat flux can be easily determined by Fourier's law in a conventional way. The multi-point heat flux gauge developed in this study can be applicable to measure the surface heat flux, the surface heat transfer coefficient during a water quenching applications of steelmaking process. The results exhibit different heat transfer regimes; such as single-phase forced convection, nucleate boiling, and film boiling, that are occurred in close proximity on the multi-point heat flux gauge quenched by water impinging jet.

보일러 폐열 회수를 통한 현장경화관(CIPP)공정 성능 향상 (Performance Improvement of Cured-In-Place-Pipe(CIPP) Process by Boiler Waste Heat Recovery)

  • 김영진;정청우;이윤정;김성수;강용태
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.164-167
    • /
    • 2013
  • The objectives of this paper are to study the performance improvement of waste heat recovery from a boiler, by the Cured-In-Place-Pipe(CIPP) process. The conventional apparatus does not utilize the waste heat from the boiler during the process. However, the present apparatus recovers the waste heat from the boiler. When the new apparatus is used, the bending strength and modulus of the CIPP becomes double, and is over 45% stronger, than the required conditions, respectively. It is found that the energy consumption reduces to 50%, by recovering the waste heat from the boiler, and the oil consumption amount reduces to 1/3, compared to the conventional apparatus.

BSCCO 2223선재의 임계전류밀도에 영향을 미치는 단계별 열처리의 효과 (The effect of step heat treatment in the critical current density of BSCCO 2223 tapes)

  • 박성창;유재무;고재웅;김영국;김철진
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.90-93
    • /
    • 2002
  • The sintering process of BSCCO 2223 tapes is a complex process that is very sensitive to parameters, such as temperature, oxygen partial pressure, heating and cooling rate and holding time. During the first heat treatment, 2212 phase of precursor powder is partially transformed into 2223 phase and some residual secondary phases, such as $(Bi,Pb)_2$$Sr_2$CuO/sub y/(2201), $(Ca,Sr)_2$CuO/sub y/(2/1AEC), (Ca,Sr)/sub 14/Cu/sub 24/O/sub 41/(14/24 AEC) etc. The secondary phases are difficult to be removed from the BSCCO 2223 matrix on the heat treatment. These secondary phases degrade the critical current density. In order to minimize the amount and size of alkaline earth cuprate(AEC) particles step heat treatment is applied during the first heat treatment under the varying atmosphere. Experimental results showed that by adapting the step heat treatment process, the amount and particle size of the secondary phases in the final tapes are decreased. Consequently, the BSCCO 2223grain texture and Jc properties are improved.

  • PDF