• Title/Summary/Keyword: Process heat

Search Result 5,853, Processing Time 0.026 seconds

Effect of Carburizing Heat Treatment Process on Microstructure and Residual Stress Changes in AISI 9310 Steel. (AISI 9310강의 침탄열처리 경로가 조직 및 잔류응력 변화에 미치는 영향)

  • Youngchul Jeong;Joohyeon Bae;Jaeman Park;Seungjun OH;Janghyun Sung;Yongsig Rho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • In this study, the carburizing heat treatment process used in aircraft gear manufacturing was compared with the general carburizing heat treatment process using AISI 9310 steel. The process of carburizing followed by slow cooling, and then quenching after austenitizing(Process A) showed less compressive residual stress and less retained austenite in the surface layer compared to the process of quenching directly after carburizing(Process B). In prpcess B, there was a large amount of retained austenite when quenched immediately after carburization, and when treated with subzero, martensite rapidly increased and the compressive residual stress increased significantly, but at the same time, there is a risk of cracking due to severe expansion in volume. Therefore, in the case of aviation parts, it is believed that a step-by-step heat treatment cycle was adopted to ensure stability against heat treatment cracks. As a result of the final tempering after sub-zero treatment, the A process specimen showed a deeper effective case depth and HV700 depth and a higher hardness value above HV700 than the B process specimen.

Heat source control intelligent system for heat treatment process

  • Lee, JeongHoon;Cho, InHee
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.28-40
    • /
    • 2022
  • Although precise temperature control in the heat treatment process is a key factor in process reliability, there are many cases where there is no separate heat source control optimization system in the field. To solve this problem, the program monitors the temperature data according to the heat source change through sensor communication in a recursive method based on multiple variables that affect the process, and the target heat source value and the actual heat treatment heat source to match the internal air temperature and material temperature. A control optimization system was constructed. Through this study, the error rate between the target temperature and the atmosphere (material surface) temperature of around 10.7% with the existing heat source control method was improved to an improved result of around 0.1% using a process optimization algorithm and system.

A Study on Heat-Treatment Process Scheduling for Heavy Forged Products using MIP (열처리 공정의 생산스케줄 수립과 적용에 관한 연구)

  • Choi, Min-Cheol
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.143-155
    • /
    • 2012
  • The purpose of this study is to formulate and solve the scheduling problem to heat-treatment process in forging process and apply it to industries. Heat-treatment is a common process in manufacturing heavy forged products in ship engines and wind power generators. Total complete time of the schedule depends on how to group parts and assign them into heat furnace. Efficient operation of heat-treatment process increases the productivity of whole production system while scheduling the parts into heat-treatment furnace is a combinatorial problem which is known as an NP-hard problem. So the scheduling, on manufacturing site, relies on engineers' experience. To improve heat-treatment process schedule, this study formulated it into an MIP mathematical model which minimizes total complete time. Three methods were applied to example problems and the results were compared to each other. In case of small problems, optimal solutions were easily found. In case of big problems, feasible solutions were found and that feasible solutions were very close to lower bound of the solutions. ILOG OPL Studio 5.5 was used in this study.

Development of Rapid Heat Ablation process Using Rotary Hot tool (회전 열공구를 이용한 쾌속 열용삭 공정 개발에 관한 연구)

  • Kim H.C.;Park S.H.;Yang D.Y.;Park S.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.224-230
    • /
    • 2005
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience due to cleaning process. This paper introduces a new rapid manufacturing process called Rapid Heat Ablation process (RHA) using the rotary hot tool to overcome limitations of traditional machining process. The rotary hot tool to satisfy requirements of RHA process is designed and produced. In order to examine relationships between kerfwidth and process parameters such as heat input, speed of tool and speed of revolution, experiments were carried out. In addition, relationship between the kerfwidth and the effective heat input was obtained. Based on the experimental results, double-curved shape was ablated to show the validity of proposed process. In the procedure, the rough cut and fine cut were performed according to the conditions of process parameters without tool change process. The practicality and effectiveness of the proposed process have been verified through ablation of three-dimensional shape.

  • PDF

Research Trend of The Heat-Treatment of Wood for Improvement of Dimensional Stability and Resistance to Biological Degradation (목재의 치수안정성과 내후성 개선을 위한 열처리 가공에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.457-476
    • /
    • 2016
  • This was investigated on the major issues and research trends regarding the heat-treatment of woods through literature reviews. The principal heat-treatment technologies utilized for industrial purposes include the Plato-process (Netherlands), the Retification process (France), the OHT-process (Germany), and the Thermowood Process (Finland). Factors that mainly influence the heat-treatment process are the wood species, process temperature, processing time, and the heating medium (air, steam, vacuum, N2, oil, etc.). Researches on investigating the optimal conditions with these process conditions being the variables stand as the mainstream. Heat-treated woods present dimensional stability improvement, but mass loss and strength reduction, a wide variations for decaying inhibition, and insufficient resistance against mold, wood borer, and termites. For further improvement in respects of durability or resistance to biological degradation, necessity to search for more suitable heat treatment process and processing conditions fit for each wood species has been suggested. Exploiting new ways to utilize heat-treated wood and extending its range of use have been considered to be important matters that need more effort put into for the sustainable and sound environment as well as saving the wood resources.

The Effects of Cyclic Heat Treatment Process for Fine Microstructure of TiAl Cast Alloy (주조용 TiAl 합금의 조직 미세화를 위한 반복열처리 공정 조건에 관한 연구)

  • Kong, Man-Sik;Yang, Hyunseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.195-200
    • /
    • 2019
  • For expanding the applications and workability of TiAl alloy, elongation is very important property. Fine microstructure is needed for elongation and physical properties of TiAl alloys. In this study, The effects of cyclic heat treatment process for fine microstructure of Ti-46Al-Nb-W-Cr-Si-C alloy, which was made by VAR (vacuum arc remelting) and VIM(vacuum induction melting) centrifugal casting process, was investigated. Cycle heat treatment process was very effective for recrystallization of this TiAl system, which has microstructure size of $50{\sim}100{\mu}m$ through pre-heat treatment, cyclic heat treatment in ${\alpha}+{\gamma}$ phase region and solution heat treatment respectively. Refined grain size was finally confirmed by photos of optical microscope and scanning electron microscope.

Net Shape Forming Process for Ball Stud Using High Strength Micro-Alloyed Cold Forging Steel (냉간 비조질강을 이용한 볼 스터드의 정형가공 공정연구)

  • Yoon, D.J.;Choi, H.J.;Lee, H.W.;Lee, G.A.;Jang, B.L.;Seo, S.L.;Choi, S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.562-567
    • /
    • 2006
  • Micro-alloyed steel or heat-treatment-free used in clean technology have been replacing for conventional quenched-and-tempered structural steels since the micro-alloyed forging steel was developed in early 1970s in Germany for saving money of heat treatment, simplified process, short delivery and good productivity. In this paper, ball stud assembled in steering system for automobile was selected to compare conventional process making heat treatment with new process using high strength micro-alloyed steel without heat treatment. The conventional process for ball stud was composed of a total of 6 steps including upsetting, forward extrusion, machining, burnishing and tread rolling with heat treatment and shot blasting. As opposed to conventional process, newly proposed process for ball stud using the clean technology without heat treatment is simplified such as forward extrusion, heading, upsetting, forming having a flange shape and tread rolling. Also net shape forming process to achieve specified process not to include machined step fur manufacturing the ball stud was applied to newly simplified process since micro-alloyed steel is difficult to be formed.

A Study on SCr420HB Helical Gear Deformative Simulation by Heat Treatment Quenching Method (열처리 냉각방식 변화에 따른 SCr420HB 헬리컬 기어 시뮬레이션 적용에 관한 연구)

  • Byun, J.H.;Byun, S.D.;Yi, C.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • In this study, a simulation was used to derive an optimal process of heat treatment with carburizing, and compared the derived result with SCr420HB helical gear in heat treatment with carburized quenching process about a change of the quenching method. The optimal carburizing process time is derived by the simulation with the theoretical time. The process has been performed by oil quenching and salt quenching method. Through the comparison of the results from the simulation(Hardness, effective case depth hardened by carburizing treatment and deformation) and the actual process, analyzed the error value of each quenching. And it verified the applicability of the simulation.

Study on Temperature Effect of Difficulty-to-Cut Material in Laser Heat Treatment Process (레이저 열원을 이용한 난삭재 열처리 공정의 온도 효과에 관한 연구)

  • Kim, Dong Hong;Jung, Dong Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.29-33
    • /
    • 2014
  • Recently, Difficult-to-cut materials are used in many manufacturing industry. But the difficult-to-cut materials are difficult-to-cutting process. So difficult to cut material cutting process was used after heat treatment through preheating for easy cutting process. In this study, Inconel 625 was preheating using laser heat source in computer simulation. Laser heat source temperature applied $1290^{\circ}C$ that suitable preheating temperature for Inconel 625. And temperature effects such as temperature distribution for moving heat source studied apply to similar actual process condition. Simulation results for heat treatment effects through temperature distribution verified.

A Study on the Development of AMESim Model for Construction of Cooling System for Semiconductor Etching Process (반도체 식각 공정용 냉각 시스템 구축을 위한 AMESim 모델 개발)

  • Kim, Daehyeon;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.106-110
    • /
    • 2017
  • Due to the plasma applied from the outside, which acts as an etchant during the etching process, considerable heat is transferred to the wafer and a separate cooling process is performed to effectively remove the heat after the process. In this case, a direct cooling method using a refrigerant is suitable for cooling through effective heat exchange. The direct cooling method using the refrigerant using the latent heat exchange is superior to the cooling method using the sensible heat exchange. Therefore, in this paper, AMESim is used to design a direct refrigerant cooling system using latent heat exchange simulator was built.The constructed simulator is reliable compared with the actual experimental results. It is expected that this simulator will help to design and search for optimal process conditions.

  • PDF