• 제목/요약/키워드: Process element

검색결과 5,715건 처리시간 0.032초

유한요소해석을 이용한 타이어 보강재용 스틸코드의 잔류응력 최소화 (Minimization of Residual Stress of the Steel Cord for the Tire-reinforcement Using Finite Element Analysis)

  • 이종섭;허훈;이준우;이병호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.201-204
    • /
    • 2008
  • In this paper, several process parameter studies of the manufacturing process of the steel cords are carried out to verify the relation between the process parameters and the residual stresses on the steel cords. At first, the finite element analysis of the drawing process is performed and the residual stress distributions with respect to the wire material and the area reduction ratio are obtained. The residual stress of the drawn wire is imported the finite element analysis of the twisting process as an initial stress. After that a parameter study of the twisting process is carried out. The process parameters are the applied tension, the over-twisting angle and the tensile strength of the drawn wire. Based on these studies, the optimum values of the process parameters which can remove or reduce the undesired residual stresses are determined. The optimum value of the process parameters are confirmed by the finite element analysis of the elastic recovery process of the steel cords. Finally, the finite element analysis of the roller straightening process is done to study the variation of the distribution of the residual stress before and after the process.

  • PDF

세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계 (Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio)

  • 박철성;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

자동차용 범퍼 압출 공정의 유한요소해석 (Finite Element Analysis of the Extrusion Process for an Automobile Bumper)

  • 김광희;윤문철
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.24-29
    • /
    • 2005
  • The development of an aluminum bumper is required in order to reduce the weight of the automobile. An porthole die extrusion process is simulated by the finite element method in order to develop the aluminum bumper which is manufactured by hollow section extrusion. The general-purpose finite element analysis software is used. The developed analysis method can be applied to the optimization of the porthole die extrusion process for the aluminum bumper.

  • PDF

요소제거기법에 의한 판재 전단가공의 유한요소 시뮬레이션 (Finite Element Simulation of Sheet Metal Shearing by the Element Kill Method)

  • 고대철;김철;김병민;최재찬
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.114-123
    • /
    • 1996
  • The major objective of the present paper is to estabilish analytical technique in order to closely understand and analyze the actual shearing process. First of all, isothermal and non-isothermal FE-simulation of the shearing process are carried out using finite element software DEFORM. Based on preliminary simulation using DEFORM, the finite element program to analyze two dimensional shearing process is developed. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. It can be seen that the developed program combined with the ductile fracture criterion and element kill method has enabled the achievement of FE-simulation from initial stage to final stage of shearing process. The effects of punch-die clearance on shearing process are also investigated. In order to verify the effectiveness of the proposed technique the simulation results are compared with the known expermental data. It is found that the results of the present work are in close agreement with the published experimental results.

  • PDF

유한요소법에 의한 전단가공 금형의 마멸예측 (Prediction of Tool Wear in Shearing Process by the Finite Element Method)

  • 고대철;김병민
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.174-181
    • /
    • 1999
  • In this paper the technique to predict tool wear theoretically in shearing process is suggested. The tool wear in the process affects the tolerances of final pans, metal flows and costs of processes. In order to predict the tool wear the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained from finite element simulation, such as nodal velocities and nodal forces, are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the wear rates on these points are accumulated during the process. It is assumed that the wear depth on the tool surface is linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is also discussed.

  • PDF

콘크리트의 변형률 국소화 및 진행성 파괴에 관한 연구 (Study on Strain Localization and Progressive Failure of Concrete)

  • 송하원;김형운;우승민
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.181-192
    • /
    • 1999
  • The progressive failure following strain localization in concrete can be analyzed effectively using finite element modeling of fracture process zone of concrete with a finite element embedded discontinuity. In this study, a finite element with embedded discontinuous line is utilized for the analysis of progressive failure in concrete. The finite element with embedded discontinuity is a kind of discrete crack element, but the difficulties in discrete crack approach such as remeshing or adding new nodes along with crack growth can be avoided. Using a discontinuous shape function for this element, the displacement discontinuity is embedded within an element and its constitutive equation is modeled from the modeling of fracture process zone. The element stiffness matrix is derived and its dual mapping technique for numerical integration is employed. Then, a finite element analysis program with employed algorithms is developed and failure analysis results using developed finite element program are verified through the comparison with experimental data and other analysis results.

자동차 외판 플랜징/헤밍 공정에 대한 유한요소해석 모델링 (Finite Element Modeling of Flanging/Hemming Process for Automotive Panels)

  • 김헌영;임희택;최광용;이우홍;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.103-107
    • /
    • 2002
  • The 2nd forming process of flanging/hemming has recently many interest because it determines external quality of automobile. It is difficult to apply finite element simulation in flanging/hemming due to small element size which needs for expression of bending effect on the die corner and big model size of side door, back door, tank lid and like opening Parts. This paper shows the process of flanging/hemming simulation using finite element model for automotive panels. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the flanging and hemming operations.

  • PDF

세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석 (Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio)

  • 김승호;김세호;허훈
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

하이드로 임베딩시 연결요소의 회전을 통한 체결력 개선 연구 (Improvement of Connection Force in Hydro-Embedding Process Through the Rotational Piercing of the Connection Element)

  • 김봉준;김동규;김동진;문영훈
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1503-1508
    • /
    • 2006
  • To increase the applicability and productivity of hydroforming process, hydro-embedding process was developed by combining the hydro-forming process with embedding process simultaneously. It is necessary in the automotive parts to form hollow bodies with connection elements which combine one part with another. The hydro-embedding process is embedding the connection element hydraulically during the operating steps of the hydroforming. In this study, technique of rotational piercing is added on the existing hydro-embedding to increase the connection force of hydro-embedded element. To estimate the feasibility of new trial process, integrated researches on the hydro-embedding process technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters for various shapes of the connection elements.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.