• Title/Summary/Keyword: Process effect

Search Result 17,844, Processing Time 0.04 seconds

Finite Element Analysis of the Room Temperature Nanoimprint Lithography Process with Rate-Dependent Plasticity (변형률속도를 고려한 상온 나노임프린트 공정의 유한요소해석)

  • Song J. H.;Kim S. H.;Hahn H. Thomas;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.63-66
    • /
    • 2005
  • Nanoimprint lithography (NIL) process at room temperature has been newly proposed in recent years to overcome the shape accuracy and sticking problem induced in a conventional NIL process. Success of the room temperature NIL relies on the accurate understand of the mechanical behavior of the polymer. Since a conventional NIL process has to heat a polymer above the glass transition temperature to deform the physical shape of the polymer with a mold pattern, viscoelastic property of polymer have major effect on the NIL process. However, rate dependent behavior of polymer is important in the room temperature NIL process because a mold with engraved patterns is rapidly pressed onto a substrate coated with the polymer by the hydraulic equipment. In this paper, finite element analysis of the room temperature NIL process is performed with considering the strain rate dependent behavior of the polymer. The analyses with the variation of imprinting speed and imprinting pattern are carried out in order to investigate the effect of such process parameters on the room temperature NIL process. The analyses results show that the deformed shape and imprint force is quite different with the variation of punch speed because the dynamic behavior of the polymer is considered with the rate dependent plasticity model. The results provide a guideline for the determination of process conditions in the room temperature NIL process.

  • PDF

Fabrication of Bi2Te2.5Se0.5 by Combining Oxide-reduction and Compressive-forming Process and Its Thermoelectric Properties (산화물환원과 압축성형 공정에 의한 Bi2Te2.5Se0.5 화합물의 제조와 열전특성)

  • Young Soo Lim;Gil-Geun Lee
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.50-56
    • /
    • 2024
  • We report the effect of plastic deformation on the thermoelectric properties of n-type Bi2Te2.5Se0.5 compounds. N-type Bi2Te2.5Se0.5 powders are synthesized by an oxide-reduction process and consolidated via spark-plasma sintering. To explore the effect of plastic deformation on the thermoelectric properties, the sintered bodies are subjected to uniaxial pressure to induce a controlled amount of compressive strains (-0.2, -0.3, and -0.4). The shaping temperature is set using a thermochemical analyzer, and the plastic deformation effect is assessed without altering the material composition through differential scanning calorimetry. This strategy is crucial because the conventional hot-forging process can often lead to alterations in material composition due to the high volatility of chalcogen elements. With increasing compressive strain, the (00l) planes become aligned in the direction perpendicular to the pressure axis. Furthermore, an increase in the carrier concentration is observed upon compressive plastic deformation, i.e., the donor-like effect of the plastic deformation in n-type Bi2Te2.5Se0.5 compounds. Owing to the increased electrical conductivity through the preferred orientation and the donor-like effect, an improved ZT is achieved in n-type Bi2Te2.5Se0.5 through the compressive-forming process.

An Influence of the Frictional Condition on Material Flow in Forward/Backward Combined Extrusion Process (전/후방 복합 압출공정에서 마찰조건이 재료 유동에 미치는 영향)

  • Kim, M.T.;Noh, J.H.;Hwang, B.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.433-436
    • /
    • 2009
  • This study is concerned with an effect of frictional condition in a forward/backward combined extrusion process. Generally, the material flow of the billet is influenced by the corners of the die cavity, the ratio in reduction in area, and thickness ratio of backward can thickness to forward can thickness. In addition, the frictional condition in contact area between the billet and the punch/die also affect the material flow. This paper investigated the effect of frictional condition for variable friction factors. The FEM simulation has been carried out in order to examine the effect of frictional condition. Deformation patterns and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Die pressure exerted on the die-workpiece interface is calculated by the simulation results and analyzed for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damage on the tool.

  • PDF

High-Performance Single-Crystal Organic Nanowire Field-Effect Transistors of Indolocarbazole Derivatives

  • Park, Gyeong-Seon;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.368-368
    • /
    • 2012
  • We report solution-processed, high-performance single-crystal organic nanowire transistors fabricated from a novel indolocarbazole (IC) derivative. The direct printing process was utilized to generate single-crystal organic nanowire arrays enabling the simultaneous synthesis, alignment and patterning of nanowires using molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. These new molecules are particularly suitable for p-channel organic field-effect transistors (OFETs) because of the high level of crystallinity usually found in IC derivatives. Selected area diffraction (SAED) and X-ray diffraction (XRD) experiments on these solution-processed nanowires showed high crystallinity. Transistors fabricated with these nanowires gave a hole mobility as high as 1.0 cm2V-1s-1 with nanowire arrays with the direct printing process.

  • PDF

The effect of Previous Cutting Process on Surface Roughness in Surface Rolling (표면로울링에서 전가공이 표면조도에 미치는 영향)

  • Yuck, Kweng-Soo;Park, Byung-Sung;Choi, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.91-100
    • /
    • 1988
  • Surface rolling which is one of the plastic deformation have advantages to imporve surface roughness, hardness and fatigue strength with relatively simple processes. In this study, the effect of previous cutting process before rolling on the surface roughness in surface rolling for mild steel was investigated. The results obtained are as follows. (1) Waveness of the previous process has the effect on the precision of the works and coarse waveness resulted in less improvement of the surface roughness. (2) The reduction of diameter and increase of hardness can be obtained at the first rolling process.

  • PDF

Study on Vibration and Thermal Characteristics Applying Staking to CCGA Package for Space Applications (우주용 CCGA에서 Staking 적용에 따른 진동 및 열 특성 연구)

  • Jeong, Myung Deuk;Jung, Sunghoon;Hong, Young Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.574-581
    • /
    • 2020
  • This paper describes the stacking effect for Ceramic Column Grid Array(CCGA) packages used for satellites. Reflow Soldering Process suitable for CCGA package with back structure was set as the process development goal to meet European Cooperation for Space Standardization(ECSS) standard. After analyzing the stacking effect according to the type of CCGA, it is verified by applying it to the CCGA Reflow Soldering Process. In order to confirm the validity of the staking effect analyzed in terms of vibration and thermal characteristics, it is verified through actual specimen production. It analyzes the cause of crack occurrence in the CCGA package and estimates the crack generation point using previously acquired inspection data.

A Study on the Effect of Energy Dissipation in Extruding Clad Rod (복합봉재 압출에 의한 에너지 소산의 영향에 관한 연구)

  • Kim, Chang-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.56-64
    • /
    • 2006
  • Rapid progress in many branches of technology has led to a demand on new materials such as high strength light weight alloys, powdered alloys and composite materials. The hydrostatic extrusion is essentially a method of extruding a clad rod through a die. In order to investigate the effect of the process conditions such as friction heat, deformation and clad thickness on the clad extrusion process, viscoplastic finite element simulations were conducted. A specific model for theoretical analysis used in this study is The single scalar variable version of Hart's model. An experiment also has been carried out using 1.5MN hydrostatic extruder with variable speed ram, LVDT and load cell for comparison. It is found that the hydrostatic extrusion pressure considering the effect of heat dissipation in this theoretical work was closer to the experimental pressure than the isothermal hydrostatic extrusion pressure.

  • PDF

Sliding Friction Property of Angle Effect for Crosshatch Micro-grooved Pattern under Lubricated (마이크로 크기를 가지는 빗살무늬 그루우브 패턴의 빗살각도변화에 대한 실험적 마찰특성)

  • Kim, Seock-Sam;Chae, Youn-Ghun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.94-99
    • /
    • 2011
  • Micro-scale surface pattern has an benefit of tribological application under lubricated sliding contact. Therefore, a special pattern, that has to reduce the coulomb friction under contact, is considered to be necessary for improved efficiency of machines. The current study investigated the friction property of angle effect for micro-scale grooved crosshatch pattern on bearing steel surface using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of hatched-angle on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction.

Group Format Selection Considering the Effect of Group Size in Aggregating Probabilistic Opinions (집단구성원수를 고려한 확률적 의견 수렴방법)

  • 박석근;조성구
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.97-107
    • /
    • 1989
  • In this study three types of aggregation methods such as the Estimate-Talk-Consensus (ETC) process, the Estimate-Talk-Estimate (ETE) process, and as a new approach the Estimate-Talk-Leader's Estimate (ETLE) process are compared to find which one of the three group processes considered is more effective than others. We, also, investigate the effect of group size on the performance of the group processes. Some experiments were conducted. It was shown that both the ETC and the ETLE processes performed better than the ETE process in approaching correct estimates in this judgmental task. As the size group increased, only the ETC and the ETC processes were shown to result in positive effect.

  • PDF

A Study on Biological Treatment of Nitrogen and Phosphorus (생물학적 질소 및 인 제거에 관한 연구)

  • 이현동;유형열;김원만
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 1992
  • The Anaerbic Anoxic/oxic process is one of the biological treatment methods to remove nitrogen and phosphorus effectively which are nutritional elements for eutrophication. Supernatant of primary sediment of Anaerobic digester is used as a carbon source instead of methanol methanol supply in usual A$_{2}$/O process. The efficiency of the following treatment processes are as follow : 1) Changing recycle ratio in the usual A$_{2}$/O process without the stage of Anaerobic digester. 2) Changing recycle ratio in the usual A$_{2}$/O process with the supernatant supply of the Anaerobic digester. In the result of comparison, changing recycle ratio is almost no effect in the removal of phosphorus, however the effect of removal in nitrogenous substance are remarkable, and the effect of Anaerobic digester is not as effective as expected because the BOD removed in the digester partly, the rate of phosphorus to the BOD exceed pertinent range.

  • PDF