• Title/Summary/Keyword: Process condition

검색결과 8,714건 처리시간 0.04초

데이텀과 위치공차에 최대실체조건이 적용되었을 경우의 위치공차의 Cp (Calculating Cp of Position Tolerance when MMC Applied at Datum and Position Tolerance)

  • 김준호;장성호
    • 산업경영시스템학회지
    • /
    • 제40권3호
    • /
    • pp.1-6
    • /
    • 2017
  • Process capability is well known in quality control literatures. Process capability refers to the uniformity of the process. Obviously, the variability in the process is a measure of the uniformity of output. It is customary to take the 6-sigma spread in the distribution of the product quality characteristic as a measure of process capability. However there is no reference of process capability when maximum material condition is applied to datum and position tolerance in GD&T (Geometric Dimensioning and Tolerancing). If there is no material condition in datum and position tolerance, process capability can be calculated as usual. If there is a material condition in a feature control frame, bonus tolerance is permissible. Bonus tolerance is an additional tolerance for a geometric control. Whenever a geometric tolerance is applied to a feature of size, and it contains an maximum material condition (or least material condition) modifier in the tolerance portion of the feature control frame, a bonus tolerance is permissible. When the maximum material condition modifier is used in the tolerance portion of the feature control frame, it means that the stated tolerance applies when the feature of size is at its maximum material condition. When actual mating size of the feature of size departs from maximum material condition (towards least material condition), an increase in the stated tolerance-equal to the amount of the departure-is permitted. This increase, or extra tolerance, is called the bonus tolerance. Another type of bonus tolerance is datum shift. Datum shift is similar to bonus tolerance. Like bonus tolerance, datum shift is an additional tolerance that is available under certain conditions. Therefore we try to propose how to calculate process capability index of position tolerance when maximum material condition is applied to datum and position tolerance.

모바일 사물인터넷을 적용한 도시철도 차량 상태기반 유지보수 프로세스 재 설계안 성과 분석 (Performance Analysis of Urban Railway Rolling Stock Condition-based Maintenance Process Redesign Applying Mobile-IoT)

  • 한현수;서경수;강태욱
    • Journal of Information Technology Applications and Management
    • /
    • 제29권6호
    • /
    • pp.63-80
    • /
    • 2022
  • In this paper, we study structural changes and performance gains in condition-based maintenance process redesign when mobile IoT technology is embedded into urban railway rolling stock. We first develop condition-based maintenance To-Be process model in accordance with the IoT deployment scheme. Secondly, we draw upon theoretical framework of redesign process analysis to develop performance evaluation method suitable to predictive maintenance shift from As-Is ordinary maintenance practice. Subsequently, To-Be process performance evaluations are conducted adopting both the quantitative and qualitative method for time, cost, and dependability dimensions. The results ascertain the considerable benefits captured through detection abnormality prior to actual rolling stock failure occurrence, and details of performance improvements and enhancement of standardization level is revealed. The procedures and results presented in this paper offers useful insights in the fields of IoT economic analysis, condition based maintenance, and business process redesign.

Discrimination of Out-of-Control Condition Using AIC in (x, s) Control Chart

  • Takemoto, Yasuhiko;Arizono, Ikuo;Satoh, Takanori
    • Industrial Engineering and Management Systems
    • /
    • 제12권2호
    • /
    • pp.112-117
    • /
    • 2013
  • The $\overline{x}$ control chart for the process mean and either the R or s control chart for the process dispersion have been used together to monitor the manufacturing processes. However, it has been pointed out that this procedure is flawed by a fault that makes it difficult to capture the behavior of process condition visually by considering the relationship between the shift in the process mean and the change in the process dispersion because the respective characteristics are monitored by an individual control chart in parallel. Then, the ($\overline{x}$, s) control chart has been proposed to enable the process managers to monitor the changes in the process mean, process dispersion, or both. On the one hand, identifying which process parameters are responsible for out-of-control condition of process is one of the important issues in the process management. It is especially important in the ($\overline{x}$, s) control chart where some parameters are monitored at a single plane. The previous literature has proposed the multiple decision method based on the statistical hypothesis tests to identify the parameters responsible for out-of-control condition. In this paper, we propose how to identify parameters responsible for out-of-control condition using the information criterion. Then, the effectiveness of proposed method is shown through some numerical experiments.

구조계의 동적응답을 이용한 역해석에서의 악조건 (On the ill - condition of reverse process from structural dynamic response data)

  • 양경택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.390-397
    • /
    • 1998
  • An approach to identifying input forces is proposed using measured structural dynamic responses and its analytical model. The identification of input forces is a reverse process and ill-conditioned problem. Its solution is unstable and generally case dependent. In this paper, the ill-condition is described considering characteristic matrix which is defined by reduced dynamic stiffness matrix. Special attention is focused on the condition number of a characteristic matrix used in the solution algorithm of this reverse process. Simple example is presented in support of the ill-condition of a reverse process.

  • PDF

공정 모니터링 시스템을 이용한 최적 사출 조건 설정 (Optimum Injection Molding Condition Search With Process Monitoring System)

  • 강중근;조영기;장형건;이병옥
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.54-60
    • /
    • 2007
  • Optimum injection molding condition for a box mold was searched by the Response Surface Analysis(RSA) with the aid of process monitoring system(PMS). Process variables on the control panel of the injection molding machine such as barrel temperatures, screw speed profile, holding pressures, etc. cannot guarantee the uniformity of the material variables directly related with the state of the product in the mold cavity. In order to make sure the state of the resin in the cavity, pressures and temperatures in the cavity, runner and nozzle were monitored in the experiment with the PMS. To accomplish the consistency of the molding process, dependent variables such as the switchover point and holding time were searched with the PMS. With a proper objective function about deflection of the box-type product, the optimum injection molding condition was obtained.

전/후방 복합 압출공정에서 마찰조건이 재료 유동에 미치는 영향 (An Influence of the Frictional Condition on Material Flow in Forward/Backward Combined Extrusion Process)

  • 김민태;노정훈;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.433-436
    • /
    • 2009
  • This study is concerned with an effect of frictional condition in a forward/backward combined extrusion process. Generally, the material flow of the billet is influenced by the corners of the die cavity, the ratio in reduction in area, and thickness ratio of backward can thickness to forward can thickness. In addition, the frictional condition in contact area between the billet and the punch/die also affect the material flow. This paper investigated the effect of frictional condition for variable friction factors. The FEM simulation has been carried out in order to examine the effect of frictional condition. Deformation patterns and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Die pressure exerted on the die-workpiece interface is calculated by the simulation results and analyzed for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damage on the tool.

  • PDF

두꺼운 세라믹 사출성형체로부터 효율적인 결합제 제거를 위한 초임계 CO2 가변조건 탈지공정 연구 (A Study on the Variable Condition Debinding Process in Supercritical CO2 for Removing Binder from Thick Ceramic Injection Molded Parts)

  • 김형건;임준혁;김형수;임종성
    • 청정기술
    • /
    • 제18권2호
    • /
    • pp.155-161
    • /
    • 2012
  • 본 연구의 목적은 분말 사출성형 공정에서 초임계유체를 이용하여 사출성형체로부터 결합제를 효율적으로 제거하는 것이다. 두께 1~2 mm 정도의 얇은 성형체의 경우는 기존의 초임계 추출공정을 이용하여 초기부터 온도, 압력이 높은 조건에서도 아무런 결함 없이 단시간 내에 결합제를 제거할 수 있지만, 시편이 두꺼워질수록 초기에 균열이 발생하기 때문에 일정 공정조건에서는 한계가 있다. 따라서 초기에는 낮은 공정조건에서 시작하여 단계별로 온도와 압력을 상승시키는 초임계 가변 조건 탈지공정을 연구하였다. 두께 1~4 mm의 세라믹 사출성형체 시편을 사용하여 여러 가지 초임계 조건에서 탈지실험을 수행하여 두꺼운 세라믹 사출성형체에 균열이 생기지 않으면서 가장 추출수율이 높은 가변조건 공정의 초기조건을 설정하였다. 이렇게 설정한 초기조건을 시작으로 직경 10 mm, 두께 4 mm의 두꺼운 세라믹 사출성형체 시편을 온도 333.15~343.15 K, 압력 12~27 MPa, $CO_2$ 유량 0.5~1.0 L/min 범위에서 단계별로 상승시켜 최종적으로는 5시간동안 95% 이상의 파라핀 왁스 결합제를 제거할 수 있었다.

공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구 (A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability)

  • 이상현;이태근;장성호
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2008년도 춘계학술대회
    • /
    • pp.417-428
    • /
    • 2008
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method, characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, When the process capability is high, more exact product size can be produced under stable manufacturing condition. larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

  • PDF

공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구 (A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability)

  • 이상현;이태근;장성호
    • 대한안전경영과학회지
    • /
    • 제11권1호
    • /
    • pp.75-85
    • /
    • 2009
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method and characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, when the process capability is high, more exact product size can be produced under stable manufacturing condition. Larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

마찰교반 홀 클린칭을 이용한 알루미늄과 고장력강의 접합에 관한 연구 (A Study on Joining of Aluminum and Advanced High Strength Steel Using Friction Stir Hole Clinching)

  • 고룡해;강길석;이경훈;김병민;고대철
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.348-355
    • /
    • 2017
  • In recent years, dissimilar materials such as aluminum, magnesium, titanium, and advanced high strength steel are widely used in automotive body due to environment concerns and fuel consumption. Therefore, joining technology is important for assembling components made of dissimilar materials. In this study, friction stir hole clinching (FSHC) was proposed as a new mechanical joining method to join dissimilar materials. This process stirs and heats the upper sheet, forming mechanical interlocking with the lower sheet. The feasibility of this FSHC process was verified by comparing cross-section of joint in FSHC and hole clinching process under the same processing condition. Taguchi method was also applied to the FSHC process to estimate the effect of process parameters on joint strength and obtain optimal combination of process parameters. Joint strength of FSHC with optimal process condition was compared to that of FSHC with initial process condition as well as that of hole clinching with optimal process condition. Results showed that the FSHC process was useful for joining dissimilar materials, even if the formability of materials was low.