• Title/Summary/Keyword: Process Variable

Search Result 2,683, Processing Time 0.036 seconds

Deduction of Change Management Factors and Weight Estimation based on ANP in Urban Renewal Project (ANP 기반 도시환경정비사업의 변화관리 요인 도출 및 중요도 산정)

  • Shin, Seung-Yoon;Son, Myung-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.176-186
    • /
    • 2013
  • For urban renewal projects progressing in large scale, it carries a characteristic that frequently changes the environment, subject, law, plan and the like by a demand from various participants and internal/external factors. As such large-scale urban renewal projects have a lot of possibilities of change, it requires setting a plan to recognize the possible variable factors by each project operation stage and to manage it systematically by defining the variable factors on the basis of working process of the entire project. Therefore this research has produced a factor of main variable management based on working process for systematic variable management on the projects that inherent various possibilities of change as urban environment refurbishment projects. And it also suggests the status of main variable factors characterized by project operation stages quantitatively through reflecting external and internal features for variable factors produced from utilizing ANP methodology.

A Hybrid Fault Diagnosis Method based on SDG and PLS;Tennessee Eastman Challenge Process

  • Lee, Gi-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.110-115
    • /
    • 2004
  • The hybrid fault diagnosis method based on a combination of the signed digraph (SDG) and the partial least-squares (PLS) has the advantage of improving the diagnosis resolution, accuracy and reliability, compared to those of previous qualitative methods, and of enhancing the ability to diagnose multiple fault. In this study, the method is applied for the multiple fault diagnosis of the Tennessee Eastman challenge process, which is a realistic industrial process for evaluating process contol and monitoring methods. The process is decomposed using the local qualitative relationships of each measured variable. Dynamic PLS (DPLS) model is built to estimate each measured variable, which is then compared with the estimated value in order to diagnose the fault. Through case studies of 15 single faults and 44 double faults, the proposed method demonstrated a good diagnosis capability compared with previous statistical methods.

  • PDF

Optimal Process Condition for Products with Multi-Categorical Ordinal Quality Characteristic (다범주 순서형 품질특성을 갖는 제품의 최적 공정조건 결정에 관한 연구)

  • Kim Sang-Cheol;Yun Won-Young;Chun Young-Rok
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.3
    • /
    • pp.109-125
    • /
    • 2004
  • This paper deals with an optimal process control problem in production of hull structural steel plate with high defective rate. The main quality characteristic(dependent variable) is the internal quality(defect) of plates and is dependent on process parameters(independent variables). The dependent variable(quality characteristics) has three categorical ordinal data and there are 35 independent variables(29 continuous variables and 6 categorical variables). In this paper, we determine the main factors and to develop the mathematical model between internal quality predicted probabilities and the main factors. Secondly, we find out the optimal process condition of main factors through analysis of variance(ANOVA) using simulation. We consider three models to obtain the main factors and the optimal process condition: linear, quadratic, error models.

A study on the Flexible Disk Grinding Process with Variable Control Stages (절삭속도제어 구간에 따른 유연성 디스크 연삭가공에 관한 연구)

  • 신관수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • A variable cutting speed control model was developed to be implemented for the flexible disk grinding process Control algorithm was based on the error referred by the discrepancy between current disk angle and intended one that are pro-posed to produce desired resulting depth of cut. Controller was implemented in two different aspect One was to initiate the control law from the beginning while the other was to activate as soon as the disk start to produce ground surface i.e. The beginning of the between edges stage. Several performance analysis were conducted comparing various process parameters such as cutting force disk angle depth of cut and disk speed with respect to process transition time Tentative results revealed that controller implemented from the earlier stages of the process showed better performance than the other revealed that controller implemented from the earlier stages of the process showed better performance that the other.

  • PDF

Process optimization using a rule induction method based on latent variables (잠재변수에 대한 규칙추론을 통한 공정 최적화)

  • Jeong, Il-Gyo;Lee, Sang-Ho;Jeon, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.633-636
    • /
    • 2006
  • In order to determine new settings of key process variables optimally, a new rule induction method through a historical data is proposed without using an explicit functional model between process and quality variables. First, a partial least square is used to reduce the dimensionality of the process variables. Then new process settings that yield the best quality variable are identified by sequentially partitioning the reduced latent variable space using a patient rule induction method. The proposed method is illustrated with a case study obtained from steel-making processes. We also show, through simulation, that the proposed method gives more stable results than estimating an explicit function even when the form of the function is known in advance.

  • PDF

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

A Study on the Optimal Control Algorithms for the Advanced Wastewater Treatment Process with Variable Hydrodynamic Flow Patterns (유로 변경식 고도하수처리 공정의 최적 제어 알고리즘에 관한 연구)

  • Kang, Seong-Wook;Cho, Wook-Sang;Huh, Hyung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.217-225
    • /
    • 2005
  • Because of the limitation of controllable operation variables for the wastewater treatment process with variable hydrodynamic flow patterns, it may preclude the use of this type of nutrient removal activated sludge process. As the operation variables, only temperature and dissolved oxygen (DO) have been used to operate the process. This study made an effort to improve treatment efficiency and operability of the process by the following methodologies: 1) process and operation data analysis using process simulation, 2) determination of optimal control logic or algorithm using a pilot-scaled experimental apparatus and its operations, and 3) application of experimental and simulation results to find the optimal process operation modes. In this study, it was found that the optimal operation mode named 'save mode' in the basis of process variables, such as the ammonia-nitrogen concentration of inlet flow, temperature and flow rate, can reduce the operation cost comparing with the present normal operation mode. And the stable conditions in nitrification were also shown by the proportional control of DO with the inlet air flow rate of blower and the mixing rate of mechanical aeration.

A Low Cost Instruction Set for Bit Stream Process (비트열 처리를 위한 저비용 명령어 세트)

  • Ham, Dong-Hyeon;Lee, Hyoung-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • Most of media compression CODECs adopts the variable length coding method. This paper proposes special registers and instruction set for bit stream process in order to accelerate the decoding process of the variable length code. The instruction set shares the conventional data path to minimize additional costs. And bit stream is read from the memory instead of the special port. Therefore the instruction set minimizes the change of the processor, and is adopted without any additional input controller and buffer, and accelerate decoding process of variable length code. The data path of the instruction set needs additional 65 bits memory and 344 equivalent gates, 0.19 ns delay under TSMC $0.25{\mu}m$ technology. The instruction set reduced the execution time of the variable length code decoding process in H.264/AVC by about 55%.

A Study on the Design of Tolerance for Process Parameter using Decision Tree and Loss Function (의사결정나무와 손실함수를 이용한 공정파라미터 허용차 설계에 관한 연구)

  • Kim, Yong-Jun;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.123-129
    • /
    • 2016
  • In the manufacturing industry fields, thousands of quality characteristics are measured in a day because the systems of process have been automated through the development of computer and improvement of techniques. Also, the process has been monitored in database in real time. Particularly, the data in the design step of the process have contributed to the product that customers have required through getting useful information from the data and reflecting them to the design of product. In this study, first, characteristics and variables affecting to them in the data of the design step of the process were analyzed by decision tree to find out the relation between explanatory and target variables. Second, the tolerance of continuous variables influencing on the target variable primarily was shown by the application of algorithm of decision tree, C4.5. Finally, the target variable, loss, was calculated by a loss function of Taguchi and analyzed. In this paper, the general method that the value of continuous explanatory variables has been used intactly not to be transformed to the discrete value and new method that the value of continuous explanatory variables was divided into 3 categories were compared. As a result, first, the tolerance obtained from the new method was more effective in decreasing the target variable, loss, than general method. In addition, the tolerance levels for the continuous explanatory variables to be chosen of the major variables were calculated. In further research, a systematic method using decision tree of data mining needs to be developed in order to categorize continuous variables under various scenarios of loss function.

Simulations of Effects of Variable Conductance Throttle Valve on the Characteristics of High Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • Thin film electronic devices which brought the current mobile environment could be fabricated only under the high quality vacuum conditions provided by high vacuum systems. Especially for the development of advanced thin film devices, constant high quality vacuum as the deposition pressure is definitely needed. For this purpose, the variable conductance throttle valves were employed to the high vacuum system. In this study, the effects of throttle valve applications on vacuum characteristics were simulated to obtain the optimum design modelling of variable conductance of high vacuum system. Commercial simulator of vacuum system, $VacSim^{(multi)}$, was used on this investigation. Reliability of employed simulator was verified by the simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure of below $10^{-3}torr$. Simulation results were plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.