• Title/Summary/Keyword: Process Parameter

Search Result 3,085, Processing Time 0.028 seconds

Characteristics of Glucose Oxidase Reaction of Onion Juice (양파 착즙액과 포도당 산화효소의 반응 특성)

  • Choi, Bong-Young;Lee, Eun-Mi;Kim, Young-Ran;Kim, Hyun-Jong;Chung, Bong-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.417-422
    • /
    • 2003
  • The onions are considered to be a favorable functional source of beverage because they contain much sugar and various nutrients, and they are juicy vegetable. Recently, consumers have a new trend to take functional foods with health benefits. To meet this need, this study was the basic research to establish a manufacturing process of functional onion beverage by glucose oxidase. Glucose oxidase catalyzes reaction of glucose oxidation and makes generation of gluconic acid. Kinetics of the reaction was also investigated, and maximum glucose consumption rate $(V_{max})$ of $26.1{\times}10^{-2}\;g/L{\cdot}min$ and $K_m$ of 5.84 g/L were obtained. Optimum conditions were obtained when the glucose oxidase catalyzed reaction was carried out at temperature of $25^{\circ}C$, agitation rate of 450 rpm and aeration rate of 4 vvm in a 2.5 L jar fermentor. Finally, the enzyme reactor was 10-times scaled up and a similar glucose oxidation performance was achieved in the scaled-up reactor.

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

An Optimum Design of the Shaped Cassegrainian Antenna (수정 곡면 카세그레인 안테나의 최적 설계)

  • Ryu, Hwang;Kim, Ik-Sang
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The purpose of this paper is an optimum design of the shaped Cassegrainian antenna system for the base station. The process of the shaped Cassegrainian antenna design is as follows : 1) the aperture field distribution is determined so as to meet design specifications, 2) a proper design parameter is selected, 3) extracting of the dimension data for the main and sub-reflector antenna To do these, Hansen's distribution is chosen as the aperture field, and the far-field pattern from the aperture is predicted by the angular spectrum. Firstly, the aperture field distribution is designed to satisfy the specification for design frequency, it is confirmed if this distribution meet the specification for another frequency band. The main- and the sub-reflectors are synthesized so as for the given beamwaveguide feed pattern to be transformed into the prescribed aperture distribution. The designed system has circular aperture, left-right symmetry and no tilted structure. The continuous surface functions of reflectors are obtained by adopting the global interpolation technique to the discrete reflector profiles. Jacobi polynomial-sinusoidal is used as the basis function. A Ka-band Cassegrainian antenna operates over 17.7 – 20.2 GHz for down-link band and 27.5 – 30 GHz for up-link band is designed.

  • PDF

Process Parameters on Quality Characteristics of Jacopever (Sebastes schlegeli Hilgendorf) under Treatment of Hydrostatic Pressure (고압처리 공정변수가 조피볼락의 초기 품질특성에 미치는 영향)

  • Kim, Min-Ji;Lee, Soo-Jeong;Kim, Chong-Tai
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.371-381
    • /
    • 2016
  • The present study investigated the effects of processing parameters such as time (10, 20, 30, 40 min), pressure (25, 50, 75, 100 MPa), and the salinity of brine (0~10%(w/v)) on jacopever (Sebastes schlegeli Hilgendorf) in order to establish optimization of the three factors using a high hydrostatic pressure (HHP) machine. To do so, it analyzed the quality characteristics of volatile basic nitrogen (VBN), trimethylamine (TMA), total bacterial counts, dynamic viscoelasticities, and differential scanning calorimetry (DSC) properties. First, when the time increased to 40 mins, by 10 min intervals, the total bacterial counts in HHP groups under $25^{\circ}C$, 100 MPa, and 4%(w/v) brine were significantly decreased except for the first 10 min in comparison to the control group. In regards to DSC properties, the onset temperature ($T_O$) of the first endothermal curve was significantly reduced. Second, when the pressure level increased up to 100 MPa by 25 MPa increments, the total bacterial counts in the HHP samples significantly decreased for 20 min at 50 MPa or higher. As the pressure increased, G', G" and the slope of tan ${\delta}$ decreased (except for 50 MPa). Third, in regards to the salinities of brine, when the HHP processing was treated at 100 MPa, $25^{\circ}C$ for 20 min, the total bacterial counts of all the HHP groups significantly decreased in comparison to those of the control group. A significant difference was found in the enthalpy of the second endothermic curve in the 6~10%(w/v) (except 7%(w/v)) HHP groups. Therefore, the salinity of the immersion water under the HHP condition was appropriate when it was lower than 6%(w/v). The present study demonstrated that the optimum parameter condition according to/under the condition of the microbial inhibition and economic effects using an HHP would be the reaction time for 20 min, reaction pressure at 100 MPa, and the salinity of 4%(w/v) brine.

Optimal parameter derivation for Muskingum method in consideration of lateral inflow and travel time (측방유입유량 및 유하시간을 고려한 Muskingum 최적 매개변수 도출)

  • Kim, Sang Ho;Kim, Ji-sung;Lee, Chang Hee
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.827-836
    • /
    • 2017
  • The most important parameters of the Muskingum method, widely used in hydrologic river routing, are the storage coefficient and the weighting factor. The Muskingum method does not consider the lateral inflow from the upstream to the downstream, but the lateral inflow actually occurs due to the rainfall on the watershed. As a result, it is very difficult to estimate the storage coefficient and the weighting factor by using the actual data of upstream and downstream. In this study, the flow without the lateral inflow was calculated from the river flow through the hydraulic flood routing by using the HEC-RAS one-dimensional unsteady flow model, and the method of the storage coefficient and the weighting factor calculation is presented. Considering that the storage coefficient relates to the travel time, the empirical travel time formulas used in the establishment of the domestic river basin plan were applied as the storage coefficient, and the simulation results were compared and analyzed. Finally, we have developed a formula for calculating the travel time considering the flow rate, and proposed a method to perform flood routing by updating the travel time according to the inflow change. The rise and fall process of the flow rate, the peak flow rate, and the peak time are well simulated when the travel time in consideration of the flow rate is applied as the storage coefficient.

Drought Forecasting Using the Multi Layer Perceptron (MLP) Artificial Neural Network Model (다층 퍼셉트론 인공신경망 모형을 이용한 가뭄예측)

  • Lee, Joo-Heon;Kim, Jong-Suk;Jang, Ho-Won;Lee, Jang-Choon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1249-1263
    • /
    • 2013
  • In order to minimize the damages caused by long-term drought, appropriate drought management plans of the basin should be established with the drought forecasting technology. Further, in order to build reasonable adaptive measurement for future drought, the duration and severity of drought must be predicted quantitatively in advance. Thus, this study, attempts to forecast drought in Korea by using an Artificial Neural Network Model, and drought index, which are the representative statistical approach most frequently used for hydrological time series forecasting. SPI (Standardized Precipitation Index) for major weather stations in Korea, estimated using observed historical precipitation, was used as input variables to the MLP (Multi Layer Perceptron) Neural Network model. Data set from 1976 to 2000 was selected as the training period for the parameter calibration and data from 2001 to 2010 was set as the validation period for the drought forecast. The optimal model for drought forecast determined by training process was applied to drought forecast using SPI (3), SPI (6) and SPI (12) over different forecasting lead time (1 to 6 months). Drought forecast with SPI (3) shows good result only in case of 1 month forecast lead time, SPI (6) shows good accordance with observed data for 1-3 months forecast lead time and SPI (12) shows relatively good results in case of up to 1~5 months forecast lead time. The analysis of this study shows that SPI (3) can be used for only 1-month short-term drought forecast. SPI (6) and SPI (12) have advantage over long-term drought forecast for 3~5 months lead time.

Parameterization and Application of Regional Hydro-Ecologic Simulation System (RHESSys) for Integrating the Eco-hydrological Processes in the Gwangneung Headwater Catchment (광릉 원두부 유역 생태수문과정의 통합을 위한 지역 생태수문 모사 시스템(RHESSys)의 모수화와 적용)

  • Kim, Eun-Sook;Kang, Sin-Kyu;Lee, Bo-Ra;Kim, Kyong-Ha;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 2007
  • Despite the close linkage in changes between the ecological and hydrological processes in forest ecosystems, an integrative approach has not been incorporated successfully. In this study, based on the vegetation and hydrologic data of the Gwangneung headwater catchment with the Geographic Information System, we attempted such an integrated approach by employing the Regional Hydro-Ecologic Simulation System (RHESSys). To accomplish this, we have (1) constructed the input data for RHESSys, (2) developed an integrated calibration system that enables to consider both ecological and hydrological processes simultaneously, and (3) performed sensitivity analysis to estimate the optimum parameters. Our sensitivity analyses on six soil parameters that affect streamflow patterns and peak flow show that the decay parameter of horizontal saturated hydraulic conductivity $(s_1)$ and porosity decay by depth (PD) had the highest sensitivity. The optimization of these two parameters to estimate the optimum streamflow variation resulted in a prediction accuracy of 0.75 in terms of Nash-Sutcliffe efficiency (NSec). These results provide an important basis for future evaluation and mapping of the watershed-scale soil moisture and evapotranspiration in forest ecosystems of Korea.

Daily Water Intake and Exposure Parameters Related to the Multi-route Exposure in Drinking Water (음용수의 섭취량 및 다경로 노출평가를 위한 노출변수 조사연구)

  • Chung, Yong;Shin, Dong-Chun;Park, Seong-Eun;Choi, Shi-Nai;Park, Seon-Mee
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.19-29
    • /
    • 1996
  • Human exposure to volatile compounds in tap water can occur from inhalation and dermal absorption as well as direct ingestion. The relative contribution to total human exposure from these pathways has been considered to be important especially for VOC's (volatile organic compounds). In an attempt to reduce the uncertainty of the risk assessment, it has been suggested that the exposure assessment process could be significantly improved by adopting Monte-Carlo simulation. However, there is no actual data in Korea for each exposure parameter to determine the level of exposure, and the distributional pattern. Therefore, we surveyed water use patterns and behavior related to multi-route exposure to VOC's in household tap water in Korea, and compared these values to the those in western countries. In the first survey, we calculated daily water intake using data from a sample of 1322 persons of several cities in Korea. In the second survey, we obtained questionnaire data on exposure time for showering, bathing and household activities, and tap water intake from 851households in Korea. In the last survey, we measured the exposure parameters (exposure time, water use rate etc.) related to showers, baths, toilets, dish washing, washing and cooking, and tap water intake was surveyed. Also, the subjects were measured their body weight, height and tidal volume, etc. A diary, a flow meter and a measuring cup were used to measure these values as precisely as possible. Average daily water intake was ranged 0.79-1.71 L/day for adults in three surveys. Tap water intake measured by log-sheet during one week in third survey was 1.26 (average), 1.98 L/day (90 percentlie), respectively. These results were comparable with results from EPA (1.4, 2L/day). The average amount of water used by housewives in the third survey was 515.0 $\pm$ 564.6L/day. In usual activity, the amount of water used in the bathroom, the laundry and the kitchen was 140.0 $\pm$ 538.9, 148.0 $\pm$ 174.5, 229.3 $\pm$ 205.4 L/day, respectively. Exposure parameters such as water intake rate, exposure duration, body weight, inhalation rates in surveyed data of Korean people differed from those published from western countries. This could be attributed to variations in lifestyle, dietary habits and physiological characteristics.

  • PDF

A Study on the Long-Run Equilibrium Between KOSPI 200 Index Spot Market and Futures Market (분수공적분을 이용한 KOSPI200지수의 현.선물 장기균형관계검정)

  • Kim, Tae-Hyuk;Lim, Soon-Young;Park, Kap-Je
    • The Korean Journal of Financial Management
    • /
    • v.25 no.3
    • /
    • pp.111-130
    • /
    • 2008
  • This paper compares long term equilibrium relation of KOSPI 200 which is underling stock and its futures by using general method fractional cointegration instead of existing integer cointegration. Existence of integer cointegration between two price time series gives much wider information about long term equilibrium relation. These details grasp long term equilibrium relation of two price time series as well as reverting velocity to equilibrium by observing difference coefficient of error term when it renounces from equilibrium relation. The result of this study reveals existence of long term equilibrium relation between KOSPI200 and futures which follow fractional cointegration. Difference coefficient, d, of 'two price time series error term' satisfies 0 < d < 1/2 beside bandwidth parameter, m(173). It means two price time series follow stationary long memory process. This also means impulse effects to balance price of two price time series decrease gently within hyperbolic rate decay. It indicates reverting speed of error term is very low when it bolts from equilibrium. It implies to market maker, who is willing to make excess return with arbitrage trading and hedging risk using underling stock, how invest strategy should be changed. It also insinuates that information transition between KOSPI 200 Index market and futures market does not working efficiently.

  • PDF