• Title/Summary/Keyword: Process Optimize

Search Result 1,213, Processing Time 0.033 seconds

Evaluation of Flexural Performance According to the Plywood Bonding Method of Ply-Lam CLT (Ply-lam CLT의 합판 접합방식에 따른 휨 성능 평가)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.107-121
    • /
    • 2021
  • The purpose of this study is to optimize the bonding method of the plywood suitable for cross-laminated timber (CLT) with plywood as a core by analyzing the flexural performance and failure mode according to the lamina species, the method of bonding plywood in the longitudinal direction, and whether or not adhesive is applied to the joint. In the case of the Douglas fir lamina layer, the modulus of elasticity decreased by about 11.5% due to longitudinal bonding, and the modulus of rupture increased or decreased according to the adhesive application and bonding method. The optimal conditions were derived as the butt joint without adhesive, half lap joint with adhesive, and butt joint. In the case of the larch lamina layer, the modulus of rupture and the modulus of elasticity decreased by about 15% and 40%, respectively. When using the half lab joint and tongue & groove joint, it is believed that it reduces the load transmitted to the middle layer by primarily preventing the failure on flexure at the joint of the plywood layer. From the results of this study, the larch lamina layer used in the manufacturing process of Ply-lam CLT did not show any difference based on the bonding method. Butt joint and half lap joint bonding method are determined to be suitable when using Douglas fir lamina layer.

IoT Based Real-Time Indoor Air Quality Monitoring Platform for a Ventilation System (청정환기장치 최적제어를 위한 IoT 기반 실시간 공기질 모니터링 플랫폼 구현)

  • Uprety, Sudan Prasad;Kim, Yoosin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.95-104
    • /
    • 2020
  • In this paper, we propose the real time indoor air quality monitoring and controlling platform on cloud using IoT sensor data such as PM10, PM2.5, CO2, VOCs, temperature, and humidity which has direct or indirect impact to indoor air quality. The system is connected to air ventilator to manage and optimize the indoor air quality. The proposed system has three main parts; First, IoT data collection service to measure, and collect indoor air quality in real time from IoT sensor network, Second, Big data processing pipeline to process and store the collected data on cloud platform and Finally, Big data analysis and visualization service to give real time insight of indoor air quality on mobile and web application. For the implication of the proposed system, IoT sensor kits are installed on three different public day care center where the indoor pollution can cause serious impact to the health and education of growing kids. Analyzed results are visualized on mobile and web application. The impact of ventilation system to indoor air quality is tested statistically and the result shows the proper optimization of indoor air quality.

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.

Factors of Selecting Temporary Road Positions for the Optimal Path of Earthwork Equipment in Road Constructions (도로공사에서 토공장비 최적 이동을 위한 가설도로 위치선정 요소)

  • Lee, Dong-Jun;Kim, Sung-Keun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.85-94
    • /
    • 2022
  • Construction industry is facing difficult challenges in terms of productivity, manpower, and industrial accidents. Currently, along with the 4th Industrial Revolution, various high-tech technologies are emerging, and efforts are being made to solve the problem by applying the technologies related to the 4th Industrial Revolution to the construction industry. As part of these efforts, research is being conducted to develop a construction equipment control system to increase productivity and safety at earthworks sites where many and various types of construction equipment are involved, and the system needs a function to increase productivity by optimizing the moving path of construction equipment. In the case of trucks, the location of the temporary road must be optimized in order to optimize the path of movement in the construction site. However, only matters related to the quality standard of temporary roads have been suggested so far, and there is no standardized process for efficiently determining the location of temporary roads. In this paper, the factors and its importance related to the location of the temporary road were identified through field surveys and interviews with experts, and a method for determining the location of the temporary road was presented. It was confirmed that the suggested method through a case study could improve the productivity of earthwork.

A Study on the Characteristics of Chlorine-Containg Cement Depending on Changes in Gypsum and Iron Modulus (이수석고 함량과 Iron Modulus 변화에 따른 염소 함유 시멘트의 특성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • The physical properties of chlorine-containing cement were analyzed to optimize the operational conditions when waste resources containing chlorine were used in the cement manufacturing process. Cement with clinker to gypsum weight ratios of 95:5 and 93:7 were manufactured. In addition, the iron modulus (IM) of clinker was set to 1.3, 1.5, and 1.7 to evaluate the burnability and physical properties of clinker. With constant chlorine content, increasing gypsum content resulted in a decrease in the 3 day-compressive strength, whereas the 28 day-compressive strength increased. In addition, flow and setting time also increased with increasing gypsum content. As the IM decreased, burnability was improved, free-CaO content decreased, alite and ferrite content increased, and compressive strength increased In particular, the compressive strength of IM 1.3 was approximately 14% greater than that of IM 1.7.

Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks (순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구)

  • Janghoon Seo;Dong-Woo Park;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 2023
  • In the present study, a deep learning model was established to predict the motion response of small fishing vessels. Hydrodynamic performances were evaluated for two small fishing vessels for the dataset of deep learning model. The deep learning model of the Long Short-Term Memory (LSTM) which is one of the recurrent neural network was utilized. The input data of LSTM model consisted of time series of six(6) degrees of freedom motions and wave height and the output label was selected as the time series data of six(6) degrees of freedom motions. The hyperparameter and input window length studies were performed to optimize LSTM model. The time series motion response according to different wave direction was predicted by establised LSTM. The predicted time series motion response showed good overall agreement with the analysis results. As the length of the time series increased, differences between the predicted values and analysis results were increased, which is due to the reduced influence of long-term data in the training process. The overall error of the predicted data indicated that more than 85% of the data showed an error within 10%. The established LSTM model is expected to be utilized in monitoring and alarm systems for small fishing vessels.

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Driver Route Choice Models for Developing Real-Time VMS Operation Strategies (VMS 실시간 운영전략 구축을 위한 운전자 경로선택모형)

  • Kim, SukHee;Choi, Keechoo;Yu, JeongWhon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.409-416
    • /
    • 2006
  • Real-time traveler information disseminated through Variable Message Signs (VMS) is known to have effects on driver route choice decisions. In the past, many studies have attempted to optimize the system performance using VMS message content as the primary control variable of driver route choice. This research proposes a VMS information provision optimization model which searches the best combination of VMS message contents and display sequence to minimize the total travel time on a highway network considered. The driver route choice models under VMS information provision are developed using a stated preference (SP) survey data in order to realistically capture driver response behavior. The genetic algorithm (GA) is used to find the optimal VMS information provision strategies which consists of the VMS message contents and the sequence of message display. In the process of the GA module, the system performance is measured using micro traffic simulation. The experiment results highlight the capability of the proposed model to search the optimal solution in an efficient way. The results show that the traveler information conveyed via VMS can reduce the total travel time on a highway network. They also suggest that as the frequency of VMS message update gets shorter, a smaller number of VMS message contents performs better to reduce the total travel time, all other things being equal.

Characteristics of Direct Aqueous Carbonation Reaction Using Incinerated Ash and Industrial By-Products (소각재 및 산업부산물을 이용한 직접 수성탄산화 반응 특성)

  • Dong Kyoo Park;Seungman Han;Changsik Choi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.113-122
    • /
    • 2024
  • In order to better understand carbon dioxide recycling, the carbon dioxide capture characteristics of six different alkaline industrial by-products, including incineration ash, desulfurized gypsum, low-grade quicklime, and steelmaking slag were investigated using a laboratory-scale direct aqueous carbonation reactor. In addition to the dissolution characteristics of each sample, the main reaction structure was confirmed through thermogravimetric analysis before and after the reaction, and the reactive CaO content was also defined through thermogravimetric analysis. The carbon dioxide capture capacity and efficiency of quicklime were determined to be 473 g/kg and 86.9%, respectively, and desulfurized gypsum and incineration ash were also evaluated to be relatively high at 51.1 to 131.7 g/kg and 51.2 to 87.7%, respectively. On the other hand, the capture efficiency of steelmaking slag was found to be less than 10% due to the influence of the production and post-cooling conditions. Therefore, in order to apply the carbonation process to steelmaking slag, it is necessary to optimize the slag production conditions. Through this study, it was confirmed that the carbon dioxide capture characteristics of incineration ash, quicklime, and desulfurized gypsum are at levels suitable for carbonation processes. Furthermore, this study was able to secure basic data for resource development technology that utilize carbon dioxide conversion to produce calcium carbonate for construction materials.

Concerns and Difficulties in Applying the National Curriculum in the Process of Developing Science Textbooks: Focused on 'Integrated Science' of the 2022 Revised National Science Curriculum (과학 교과서 개발 과정에서 교육과정 적용에의 고민과 어려움 -2022 개정 과학과 교육과정의 '통합과학'을 중심으로-)

  • Bongwoo Lee;Jaeyong Park;Jeongwoo Son;Ki-Young Lee;Wonho Choi;Kew-Cheol Shim
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.2
    • /
    • pp.219-229
    • /
    • 2024
  • The purpose of this study is to analyze the concerns and difficulties encountered by authors involved in the development of integrated science textbooks. Specifically, it focuses on their experiences with understanding and implementing the 2022 revised science curriculum. We collected 89 opinions from textbook authors and categorized them into several key areas: understanding the terminology and descriptors provided in the curriculum, structuring learning content, inquiries and activities, and the depth and scope of learning content. The analysis revealed that the most difficulty encountered by the textbook authors was in defining the level and scope of learning content. Many also expressed concerns and difficulties related to the ambiguity of terms and predicates. In terms of the composition of learning content, difficulties were identified in concerning the repetitive descriptions of achievement standards and the discrepancy between the arrangement of achievement standards and the flow of learning. Regarding inquiries and activities, there were experiments presented that were difficult to experience or actually implement, along with limitations in activity composition due to the need to optimize learning volume. Given the importance of high-quality textbooks for effective science education at the national level, it is crucial to establish effective communication channels between curriculum developers and textbook authors. Additionally, a robust support system for textbook development should be established.