• Title/Summary/Keyword: Process Noise

Search Result 2,996, Processing Time 0.034 seconds

Design of Experiment and Analysis Method for the Integrated Logistics System Using Orthogonal Array (직교배열을 이용한 통합물류시스템의 실험 설계 및 분석방법)

  • Park, Youl-Kee;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5622-5632
    • /
    • 2011
  • This paper presents the simulation design and analysis of Integrated Logistics System(ILS) which is operated by using the AGV(Automated Guided Vehicle). To maximize the operation performances of ILS with AGV, many parameters should be considered such as the number, velocity, and dispatching rule of AGV, part types, scheduling, and buffer sizes. We established the design of experiment in a way of Orthogonal Array in order to consider (1)maximizing the throughput; (2)maximizing the vehicle utilization; (3)minimizing the congestion; and (4)maximizing the Automated Storage and Retrieval System(AS/RS) utilization among various critical factors. Furthermore, we performed the optimization by using the simulation-based analysis and Evolution Strategy(ES). As a result, Orthogonal Array which is conducted far fewer than ES significantly saved not only the time but the same outcome when compared after validation test on the result from the two methods. Therefore, this approach ensures the confidence and provides better process for quick analysis by specifying exact experiment outcome even though it provides small number of experiment.

Optimal Value Detection of Irregular RR Interval for Atrial Fibrillation Classification based on Linear Analysis (선형분석 기반의 심방세동 분류를 위한 불규칙 RR 간격의 최적값 검출)

  • Cho, Ik-Sung;Jeong, Jong-Hyeog;Cho, Young Chang;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2551-2561
    • /
    • 2014
  • Several algorithms have been developed to detect AFIB(Atrial Fibrillation) which either rely on the linear and frequency analysis. But they are more complex than time time domain algorithm and difficult to get the consistent rule of irregular RR interval rhythm. In this study, we propose algorithm for optimal value detection of irregular RR interval for AFIB classification based on linear analysis. For this purpose, we detected R wave, RR interval, from noise-free ECG signal through the preprocessing process and subtractive operation method. Also, we set scope for segment length and detected optimal value and then classified AFIB in realtime through liniar analysis such as absolute deviation and absolute difference. The performance of proposed algorithm for AFIB classification is evaluated by using MIT-BIH arrhythmia and AFIB database. The optimal value indicate ${\alpha}=0.75$, ${\beta}=1.4$, ${\gamma}=300ms$ in AFIB classification.

Baseline Wander Removing Method Based on Morphological Filter for Efficient QRS Detection (효율적인 QRS 검출을 위한 형태 연산 기반의 기저선 잡음 제거 기법)

  • Cho, Ik-Sung;Kim, Joo-Man;Kim, Seon-Jong;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.166-174
    • /
    • 2013
  • QRS detection of ECG is the most popular and easy way to detect cardiac-disease. But it is difficult to analyze the ECG signal because of various noise types. The important problem in recording ECG signal is a baseline wandering, which is occurred by rhythm of respiration and muscle contraction attaching to an electrode. Particularly, in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, the design of algorithm that exactly detects QRS region using minimal computation by analyzing the person's physical condition and/or environment is needed. Therefore, baseline wander removing method based on morphological filter for efficient QRS detection method is presented in this paper. For this purpose, we detected QRS through the preprocessing method using morphological filter, adaptive threshold, and window. The signal distortion ratio of the proposed method is compared with other filtering method. Also, R wave detection is evaluated by using MIT-BIH arrhythmia database. Experiment result show that proposed method removes baseline wanders effectively without significant morphological distortion.

A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures (인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법)

  • Kim, Hang-Tae;Song, Wonseok;Choi, Hyuk;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.642-651
    • /
    • 2015
  • A vanishing point is a point where parallel lines converge, and they become evident when a camera's lenses are used to project 3D space onto a 2D image plane. Vanishing point detection is the use of the information contained within an image to detect the vanishing point, and can be utilized to infer the relative distance between certain points in the image or for understanding the geometry of a 3D scene. Since parallel lines generally exist for the artificial structures within images, line-detection-based vanishing point-detection techniques aim to find the point where the parallel lines of artificial structures converge. To detect parallel lines in an image, we detect edge pixels through edge detection and then find the lines by using the Hough transform. However, the various textures and noise in an image can hamper the line-detection process so that not all of the lines converging toward the vanishing point are obvious. To overcome this difficulty, it is necessary to assign a different weight to each line according to the degree of possibility that the line passes through the vanishing point. While previous research studies assigned equal weight or adopted a simple weighting calculation, in this paper, we are proposing a new method of assigning weights to lines after noticing that the lines that pass through vanishing points typically belong to artificial structures. Experimental results show that our proposed method reduces the vanishing point-estimation error rate by 65% when compared to existing methods.

Empirical Mode Decomposition using the Second Derivative (이차 미분을 이용한 경험적 모드분해법)

  • Park, Min-Su;Kim, Donghoh;Oh, Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.335-347
    • /
    • 2013
  • There are various types of real world signals. For example, an electrocardiogram(ECG) represents myocardium activities (contraction and relaxation) according to the beating of the heart. ECG can be expressed as the fluctuation of ampere ratings over time. A signal is a composite of various types of signals. An orchestra (which boasts a beautiful melody) consists of a variety of instruments with a unique frequency; subsequently, each sound is combined to form a perfect harmony. Various research on how to to decompose mixed stationary signals have been conducted. In the case of non-stationary signals, there is a limitation to use methodologies for stationary signals. Huang et al. (1998) proposed empirical mode decomposition(EMD) to deal with non-stationarity. EMD provides a data-driven approach to decompose a signal into intrinsic mode functions according to local oscillation through the identification of local extrema. However, due to the repeating process in the construction of envelopes, EMD algorithm is not efficient and not robust to a noise, and its computational complexity tends to increase as the size of a signal grows. In this research, we propose a new method to extract a local oscillation embedded in a signal by utilizing the second derivative.

Development of X-ray Detector using Liquid Crystal with Front Light (전면광원(Front Light)을 적용한 액정 X선 검출기 개발)

  • Rho, Bong Gyu;Baek, Sam Hak;Kang, Seok Jun;Lee, Jong Mo;Bae, Byung Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.831-840
    • /
    • 2019
  • The X-ray detector by liquid crystal with front light was proposed and verified by a X-ray image. The proposed detector utilizes the visible light instead of the electric signal by transistor. Therefore, it shows low noise and can be fabricated at low cost. The liquid crystal detector uses the orientation change of the liquid crystal molecule by conductivity change of the photoconductive layer. We can get the X-ray image from the transmitted light through the liquid crystal. The X-ray dose was calibrated from the measured transmittance of the visible light after comparison to the reference transmittance curve of the liquid crystal. The amorphous Se was used for photo con ducting layer and parylene was used for the liquid crystal alignment instead of the conventional alignment layer which needs high-temperature process over 200℃. The proposed X-ray detector can decrease the X-ray dose by high sensitivity which was verified by simulation. After the fabrication of the X-ray detector, the X-ray image was obtained as a function of the bias voltage to the liquid crystal. 10 lines/mm resolution was obtained from the line pattern and we will apply it to the 17inch diagonal liquid crystal X-ray detector with 3π retardation.

Super Resolution Algorithm Based on Edge Map Interpolation and Improved Fast Back Projection Method in Mobile Devices (모바일 환경을 위해 에지맵 보간과 개선된 고속 Back Projection 기법을 이용한 Super Resolution 알고리즘)

  • Lee, Doo-Hee;Park, Dae-Hyun;Kim, Yoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • Recently, as the prevalence of high-performance mobile devices and the application of the multimedia content are expanded, Super Resolution (SR) technique which reconstructs low resolution images to high resolution images is becoming important. And in the mobile devices, the development of the SR algorithm considering the operation quantity or memory is required because of using the restricted resources. In this paper, we propose a new single frame fast SR technique suitable for mobile devices. In order to prevent color distortion, we change RGB color domain to HSV color domain and process the brightness information V (Value) considering the characteristics of human visual perception. First, the low resolution image is enlarged by the improved fast back projection considering the noise elimination. And at the same time, the reliable edge map is extracted by using the LoG (Laplacian of Gaussian) filtering. Finally, the high definition picture is reconstructed by using the edge information and the improved back projection result. The proposed technique removes effectually the unnatural artefact which is generated during the super resolution restoration, and the edge information which can be lost is amended and emphasized. The experimental results indicate that the proposed algorithm provides better performance than conventional back projection and interpolation methods.

Counterfeit Money Detection Algorithm using Non-Local Mean Value and Support Vector Machine Classifier (비지역적 특징값과 서포트 벡터 머신 분류기를 이용한 위변조 지폐 판별 알고리즘)

  • Ji, Sang-Keun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 2013
  • Due to the popularization of digital high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy for anyone to make a high-quality counterfeit money. However, the probability of detecting a counterfeit money to the general public is extremely low. In this paper, we propose a counterfeit money detection algorithm using a general purpose scanner. This algorithm determines counterfeit money based on the different features in the printing process. After the non-local mean value is used to analyze the noises from each money, we extract statistical features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and test the support vector machine classifier for identifying either original or counterfeit money. In the experiment, we use total 324 images of original money and counterfeit money. Also, we compare with noise features from previous researches using wiener filter and discrete wavelet transform. The accuracy of the algorithm for identifying counterfeit money was over 94%. Also, the accuracy for identifying the printing source was over 93%. The presented algorithm performs better than previous researches.

A Study on M. Scheler's Theory of Perception (막스 셸러의 지각론 연구 - 활력적 충박과 감각지각의 관계 연구 -)

  • Kum, Kyo-young
    • Journal of Korean Philosophical Society
    • /
    • v.130
    • /
    • pp.23-45
    • /
    • 2014
  • It can be said that Scheler's theory of perception is the theory of drive-conditioned perception, in more detail the theory of drive-motoric conditions of perception. Scheler tells us that Immanuel Kant and Ernst Mach were mistaken in their assumption that sensations are purely receptive and primary in all experience. He claims that sensations are not primary but subsequent to a subliminal attention of vital drives(called 'Vor-Liebe und Vor-Interesse' by him). And because sense perception cannot take place without a vital energy of drives that account for the ongoing activity of perception, no object can be perceived unless it stimulates movement in an organism which exercises a count-movement against objects and thereby resisting objects. According to Scheler, an order of foundation such as the preexistence of images prior to perception; the priority of perception with regard to functions of senses; the priority of sense functions with regard to sensations has to be kept in mind. And it has to be kept in mind that the essence of life is pre-empirical, is pure becoming(Werden) and unbecoming(Entwerden), a process in which its two empirical sides are not yet separated. Then it is easy to see that perception is conditioned by vital drives. The drive-conditioned theory of perception is also supported by the fact that the motility of an organism determines its sensory apparatus, an organism has an alphabet of senses that can serve as signs of luring and noticing objects that are meaningful for its drive-motoric behavior. For example a lizard remains undisturbed by a gun shot but runs away from the slightest noise in the grass.

Highly efficient CMP surveying with ground-penetrating radar utilising real-time kinematic GPS (실시간 GPS를 이용한 고효율 GPR CMP 탐사)

  • Onishi Kyosuke;Yokota Toshiyuki;Maekawa Satoshi;Toshioka Tetsuma;Rokugawa Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • The main purpose of this paper is to describe a highly efficient common mid-point (CMP) data acquisition method for ground-penetrating radar (GPR) surveying, which is intended to widen the application of GPR. The most important innovation to increase the efficiency of CMP data acquisition is continuous monitoring of the GPR antenna positions, using a real-time kinematic Global Positioning System (RTK-GPS). Survey time efficiency is improved because the automatic antenna locating system that we propose frees us from the most time-consuming process-deployment of the antenna at specified positions. Numerical experiments predicted that the data density and the CMP fold would be increased by the increased efficiency of data acquisition, which results in improved signal-to-noise ratios in the resulting data. A field experiment confirmed this hypothesis. The proposed method makes GPR surveys using CMP method more practical and popular. Furthermore, the method has the potential to supply detailed groundwater information. This is because we can convert the spatially dense dielectric constant distribution, obtained by using the CMP method we describe, into a dense physical value distribution that is closely related to such groundwater properties as water saturation.