• Title/Summary/Keyword: Process Integration and Design Optimization(PIDO)

Search Result 27, Processing Time 0.028 seconds

A Study on the Application of PIDO Technique for the Maintenance Policy Optimization Considering the Performance-Based Logistics Support System (성과기반 군수지원체계의 정비정책 최적화를 위한 PIDO 기법 적용에 관한 연구)

  • Ju, Hyun-Jun;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.632-637
    • /
    • 2014
  • In this paper the concept of the performance-based logistics (PBL) support for weapon systems is discussed and an enhancement is studied such that prior to the Operational phase, the development of the PBL can begin from the Engineering & Manufacturing Development (EMD) phase together with multiple performance indices considered. The genetic algorithm should be considered for the complex system to solve the maintenance policy optimization. In particular, the requirement of repair level analysis model is developed based on reflecting the PBL concept. To decide the maintenance policy prior to Operational phase in accordance with customer requirements, the PIDO(Process Integration and Design Optimization) technique useful in choosing the performance indices and changing the constraints was used. The genetic algorithm of PIDO tool, like PIAnO and ModelCenter, was verified that it could be applied to optimize the maintenance policy.

A Study of Optimal Distribution of Gas Temperature in Directly-Fired Reheating Furnace (직접 가열식 가열로 내 최적 분위기온도 분포 해석에 관한 연구)

  • Jeong, Eui-Soo;Shim, Sung-Min;Kim, Young-Deuk;Kang, Deok-Hong;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2122-2125
    • /
    • 2008
  • Because the reheating furnace consumes a large amount of energy to heat up the slabs, it is very important to find an optimal temperature patterns in the furnace for energy saving as well as uniform target temperature at the exit of the furnace. In this study, the temperature profiles in the slab are determined by solving the transient one-dimensional heat conduction equation in conjunction with boundary conditions with total heat exchange factors. The optimal temperature patterns are obtained to minimize the fuel consumption with satisfying the predetermined constraint conditions. The design optimization is performed by using a genetic algorithm and the optimal results are validated with results obtained from the PIDO tool, called as P.I.A.n.O.

  • PDF

Design Optimization of a RC Building Structure for Minimizing Material Cost (재료비 최소화를 위한 RC 빌딩 구조물의 최적설계)

  • Ahn, Hee-Jae;Park, Chang-Hyun;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.568-573
    • /
    • 2010
  • 본 논문에서는 압축하중 및 풍하중, 지진하중을 받는 RC (Reinforced Concrete) 빌딩 시공에 필요한 부재의 재료비를 최소화하기 위해 부재의 부피를 최소화하는 최적설계를 수행한다. 최적설계 수행을 위해 상용 PIDO (Process Integration and Design Optimization) 툴인 PIAnO (Process Integration, Automation and Optimization)에서 제공하는 다양한 설계기법들을 이용한다. 먼저 실험계획법을 사용하여 실험계획을 세우고, 실험점에 따라 범용 구조해석 프로그램인 MIDAS Gen을 사용하여 구조해석을 수행한다. 그리고 해석결과를 바탕으로 각 응답에 대한 근사모델을 생성한 후 근사모델과 최적화기법을 이용하여 최적설계를 수행하고, 제한조건을 만족하면서 부재의 부피를 최소화함으로써 제안된 설계방법의 유효성을 보인다.

  • PDF

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension (차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.683-688
    • /
    • 2018
  • Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

A Comparative Study of Approximation Techniques on Design Optimization of a FPSO Riser Support Structure (FPSO Riser 지지구조의 설계최적화에 대한 근사화 기법의 비교 연구)

  • Shim, Chun-Sik;Song, Chang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • The paper deals with the comparative study of design optimization based on various approximation techniques in strength design of riser support structure installed on floating production storage and offloading unit(FPSO) using offshore operation loading conditions. The design optimization problem is formulated such that structural member sizing variables are determined by minimizing the weight of riser support structure subject to the constraints of structural strength in terms of loading conditions. The approximation techniques used in the comparative study are response surface method based sequential approximate optimization(RBSAO), Kriging based sequential approximate optimization(KBSAO), and the enhanced moving least squares method(MLSM) based approximate optimization such as CF(constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization(PIDO) tools are employed for the applications of RBSAO and KBSAO. The enhanced MLSM based approximate optimization techniques are newly developed to ensure the constraint feasibility. In the context of numerical performances such as design solution and computational cost, the solution results from approximate techniques based design optimization are compared to actual non-approximate design optimization.

Two-Stage Design Optimization of an Automotive Fog Blank Cover for Enhancing Its Injection Molding Quality (자동차용 안개등 커버의 사출성형 품질 향상을 위한 2 단계 설계 최적화)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Pyo, Byung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1097-1103
    • /
    • 2010
  • Injection pressure, an important factor in the filling procedure, should be minimized to enhance injection molding quality. In addition, warping deformation and weld lines, which are representative failures, should be avoided to enhance injection molding quality. To improve injection molding quality, the design procedure for an automotive fog blank cover is divided into two stages. In the first stage, we optimally obtain injection molding process variables that minimize injection pressure and warping deformation by using design of experiments, approximation and optimization techniques equipped in PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration and Design Optimization) tool. Then, we determine the thickness of the automotive fog blank cover that enables us to avoid generating weld lines. The design results we obtain in this study are found far better than those of the initial design, which demonstrates the effectiveness of our design method.

Optimal Design of flat rolling about Lead Wire for Productivity Improvement (리드용 와이어의 생산성 향상을 위한 평압연 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.29-34
    • /
    • 2017
  • In this paper, we report a method of improving the productivity of lead wire fabricated through the rolling process by increasing its linear velocity. The most important point to consider when raising the linear velocity is that the original specifications must still be adhered to. In other words, the dimensional tolerance must be satisfied when increasing the linear velocity of the wire without causing cracks. However, if the linear velocity of the wire is increased, the degree of reduction must also be increased, which causes more damage to the wire and increases the load on its surface. Therefore, we studied a three step rolling process which can satisfy the specifications of the wire produced through the two step rolling process and improve the productivity. In this study, only the roll gap of the three-stage rolling roller is assumed to be a variable, while the other conditions are the same as the field conditions. In addition, through the PIANO (Process Integration, Design and Optimization) tool, the (optimum?) surface roughness and maximum stress are maintained.

Determination of Valve Gate Open Timing for Minimizing Injection Pressure of an Automotive Instrument Panel (자동차용 인스트루먼트 패널의 사출압력 최소화를 위한 밸브 게이트 열림 시점 결정)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.46-51
    • /
    • 2012
  • Injection pressure, an important factor in filling process, should be minimized to enhance injection molding quality. Injection pressure can be controlled by valve gate open timing. In this work, we decided the valve gate open timing to minimize the injection pressure. To solve this design problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding CAE tool, to PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration, and Design Optimization) tool using the file parsing method. In order to reduce computational cost, we performed an approximate optimization using meta-models that replaced expensive computer simulations. At first, we carried out DOE (Design of Experiments) using OLHD (Optimal Latin Hypercube Design) available in PIAnO. Then, we built Kriging models using the simulation results at the sampling points. Finally, we used micro GA (Genetic Algorithm) available in PIAnO. Using the proposed design approach, the injection pressure has been reduced by 13.7% compared to the initial one. This design result clearly shows the validity of the proposed design approach.

A Study on Optimal Design for Linear Electromagnetic Generator of Electricity Sensor System using Vibration Energy Harvesting (진동에너지 하베스팅을 이용한 전력감지시스템용 리니어 전자기 발전기에 관한 최적설계)

  • Cho, Seong Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • Recently, an electricity sensor system has been installed and operated to prevent failures and accidents by identifying whether a transformer is normal in advance of failure. This electricity sensor system is able to both measure and monitor the transformer's power and voltage remotely and send information to a manager when unusual operation is discovered. However, a battery is required to operate power detection devices, and battery systems need ongoing management such as regular replacement. In addition, at a maintenance cost, occasional human resources and worker safety problems arise. Accordingly, we apply a linear electromagnetic generator using vibration energy from a transformer for an electric sensor system's drive in this research and we conduct optimal design to maximize the linear electromagnetic generator's power. We consider design variables using the provided design method from Process Integration, Automation, and Optimization (PIAnO), which is common tool from process integration and design optimization (PIDO). In addition, we analyze the experiment point from the design of the experiments using "MAXWELL," which is a common electromagnet analysis program. We then create an approximate model and conduct accuracy verification. Finally, we determine the optimal model that generates the maximum power using the proven approximate kriging model and evolutionary optimization algorithm, which we then confirm via simulation.

Analysis of development methods for a Multidisciplinary Design Optimization framework (다분야 통합 최적설계 프레임워크 구축방법 분석)

  • Lee, Ho-Jun;Lee, Jae-Woo;Moon, Chang-Joo;Kim, Sang-Ho;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.947-953
    • /
    • 2008
  • MDO(Multidisciplinary Design and Optimization) framework can be an integrated environment or a system, which is for synthetic and simultaneous analysis and design optimization in various design fields of aerospace systems. MDO framework has to efficiently use and integrate distributed resources such as various analysis codes, optimization codes, CAD tools, DBMS and etc. in heterogeneous environment, and to provide graphical and easy-to-use user interfaces. Also, its development method can be changed by design objects and development environment. In this paper, we classify MDO frameworks into three types according to the development environments: Single PC-based, PLinda-based and Web Services-based MDO framework. And, we compare and analyze these frameworks.