• Title/Summary/Keyword: Process Heat Application

Search Result 471, Processing Time 0.035 seconds

Application for parallel computation for finite element analysis of welding processes (용접공정 유한요소 해석의 병렬 처리 적용)

  • 임세영;김주완;최강혁
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.273-275
    • /
    • 2004
  • A parallel multi-frontal solver is developed for finite element analysis of an arc-welding process, which entails phase evolution, heat transfer, and deformations of structure. We verify the code via comparison to a commercial code,SYSWELD. Attention is focused on the implementation of the parallel solver using MPI library, on the speedup by parallel computation, and on the effectiveness of the solver in welding application

  • PDF

A Study on Heat Transfer Characteristics of Impinging Jet about Distance Ratio leer Thermal Control (전열제어를 위한 충돌제트의 거리비에 따른 열전달특성에 관한 연구)

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1237-1243
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in eletronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are distance between nozz1e and heat source. Reynolds number is 6000.

  • PDF

A Study on Heat Transfer Characteristics of Impinging Jet Using Infared Thermal Image Processing System (적외선열화상처리장치를 이용한 충돌제트의 전열특성에 관한 연구)

  • Kim, D.K.;Bae, S.T.;Kim, S.P.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.711-716
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in electronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are nozzle exit angle $(30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ})$ and distance between nozzle and heat source is fixed 6d("d" is diameter of circular nozzle(10 mm). Reynolds number is 4500.

  • PDF

Development of POS446M & POS430 Ti Flatron Rail Manufacturing Process for Practical Use

  • Chun, Hyun-Tae;Koh, Nam-Je;Han, Soo-Deok;Park, No-Jin;Oh, Myung-Hoon
    • Journal of Information Display
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • POS446M and POS430Ti alloys were investigated for application to a Flatron rail instead of conventional 28 wt%Cr alloy in order to reduce material costs. It was found that the permeability decrement of materials could be successfully minimized by proper heat treatment, and that the beam landing drift of the Flatron was not overly affected by the permeability of materials. In addition, the Flatron manufacturing process using POS430Ti was also stabilized without glass cracking by the application of the modified process conditions, which were optimized through the design of the experiment method.

Clad Steel for Application of Hull Structure (클래드강 적용을 위한 선급용 강재의 열처리 특성 평가)

  • Shin, Yong-Taek
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.20-25
    • /
    • 2015
  • Clad steel has good corrosion resistance and mechanical properties arising from the hot rolling of dissimilar metals, such as carbon steel and stainless steel. However both good corrosion resistance from the cladding plate material(stainless steel) and mechanical properties from the base plate material (carbon steel) are difficult to obtain because the different steels display opposite behaviors during the cladding process. In order to make clad steel for application in the hulls of ships, proper materials selection and heat-treatment conditions are necessary. In this study, mechanical properties of base plate materials with different chemical composition were evaluated according to heat condition of cladding plate material.

The Practical Application of High Strength Concrete to Major Structural Elements in consideration of Heat of Hydration (고강도 콘크리트의 주요구조부재에 대한 현장타설 및 수화온도 측정)

  • 윤영수;이승훈;성상래;백승준;신성우;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.195-200
    • /
    • 1995
  • This paper presents the practical use of high strength concrete on 28-story Samsung Shin-dacbang Housing-Commercial Combined Building with 8-story basements located in Seoul. 700 Kg/$\textrm{cm}^2$ compressive Strength concrete was placed for basement core-walls and 500 kg/$\textrm{cm}^2$ concrete was used for structural frames up to 10th floor. The thermal sensors were installed prior to concrete casting into the core walls to measure the heat of hydration during hardening process. The correlation of core strength to the standard cylinder test strength was also discussed. The successful utilization of 500 and 700 kg/$\textrm{cm}^2$ concrete shows that the practical application of high strength concrete has a great potential to the high-rise R.C building construction.

  • PDF

The characteristics of bead welding on steel with process parameter during the laser-arc hybrid welding(I) - Effect of flow rate of shield gas and distance between laser and arc - (강의 레이저-아크 하이브리드 용접시 공정변수에 따른 비드용접특성 (I) - 보호가스 유량 및 레이저 아크간 거리의 영향 -)

  • Kim, Jong-Do;Myung, Gi-Hoon;Song, Moo-Keun;Oh, Jae-Hwan;Suh, Jeong
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Recently many studies for improvement of productivity and automation of process are in progress, and among others, laser-arc hybrid welding that combined laser and arc has attracted much attention. Since parameters by interactions as well as the parameters of each heat source should be considered, There are a lot of hardship in actual application, even though many researches have been done so far. Therefore in this study, bead welding was done to examine the effects of the flow rate of shield gas and the distance between laser and arc during laser-arc hybrid welding. As for hybrid heat source, disk laser and MIG were used. As experiment result, sound bead and weld with no defect were formed when the flow rate of front and rear shield gas were respectively 20 l/min and 15 l/min, and deep penetration was done at DLA=3 mm.

Application of the Polymer Behavior Model to 3D Structure Fabrication (3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용)

  • Kim, Jong-Young;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.

Bar Temperature Analysis of a Hot Rolling Process. (열간 압연공정의 강판 온도 분포 해석)

  • 백기남;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.307-315
    • /
    • 1989
  • In this paper, we have analyzed the temperature variation trend of a slab on between the process of reheating furnace and the termination of roughing mill process during hot rolling process. 1) cooling by radiation and convection current in the air, 2) plastic deformation heat, 3) cooling by descaling water, 4) cooling by contact with rolling rolls and/or transmitting rolls. For the analysis, the factors have been adopted as the problems of the rolling process to be solved such that we have established an application technique in relation to the determination of boundary conditions on the slab surface. We have presented a procedure for an analysis of the cooling phenomenon treated as a problem of two-dimensional transient heat flow using finite difference equation and suggested techniques of implementing sequentialized rolling tasks in correlation with the procedure. From the result of simulation, it is shown that the difference between calculation value and measurement value is within the range of the industrial measurement error. Also, it is proved that the assumptions, conditions, and properties used in the computer simulation is appropriate by showing that the pattern of a drop in temperature at each rolling event is in accord with real circumstances.

A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface (3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Lee, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.